Skip to main content
Log in

Modification of esterified cell wall phenolics increases vulnerability of tall fescue to herbivory by the fall armyworm

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Feruloylation of arabinoxylan in grass cell walls leads to cross-linked xylans. Such cross-linking appears to play a role in plant resistance to pathogens and insect herbivores. In this study, we investigated the effect of ferulate cross-linking on resistance to herbivory by fall armyworm (Spodoptera frugiperda) making use of genetically modified tall fescue [Schedonorus arundinaceus (Festuca arundinacea)] expressing a ferulic acid esterase gene. Mature leaves of these plants have significant reduced levels of cell wall ferulates and diferulates but no change in acid detergent lignin. These reduced levels of esterified cell wall ferulates in transgenic plants had a positive effect on all measures of armyworm larval performance examined. More larvae survived (89 vs. 57 %) and grew faster (pupated 2.1 days sooner) when fed transgenic leaves with reduced levels of cell wall ferulates, than when fed control tall fescue leaves where levels of cell wall ferulates were not altered. Overall, mortality, growth and food utilization were negatively associated with level of esterified cell wall ferulates and diferulates in leaves they were fed. This study is the first to use transgenic plants with modified level of cell wall esterified ferulates to test the role of feruloylation in plant resistance to insects. It is concluded that the accumulation of ferulates and the cross-linking of arabinoxylans via diferulate esters in the leaves of tall fescue underlies the physical barrier to insect herbivory. Reducing ferulate cross-linking in grass cell walls could increase susceptibility of these plants to insect folivores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AX:

Arabinoxylan

GAX:

Glucuronoarabinoxylan

FA:

Ferulic acid

HCA:

Hydroxycinnamic acid

FAW:

Fall armyworm

FAEA:

Ferulic acid esterase

AD:

Approximate digestibility

ECI:

Efficiency of conversion of ingested food

ECD:

Efficiency of conversion of digested food into biomass

RGR:

Relative growth rate

GLM:

General linear model

SE:

Standard error

tFA:

Trans-ferulic acid

cFA:

cis-ferulic acid

tpCA:

Trans p-coumaric acid

5-5′ DFA:

5-5′-diferulic acid

8-0-4′ DFA:

8-0-4′-diferulic acid

8-5C DFA:

8-5cyc diferulic acid benzofuran

References

  • Allerdings E, Ralph J, Steinhart H, Bunzel M (2006) Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry 67:1276–1286

    Article  PubMed  CAS  Google Scholar 

  • Barbehenn RV, Karow DN, Spickard A (2004) Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia 140:86–95

    Article  PubMed  Google Scholar 

  • Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) (2007) Flora of North America north of Mexico. Magnoliophyta: Commelinidae (in part): Poaceae, part 1, vol 24. Oxford University Press, New York

  • Barros-Rios J, Malvar RA, Jung HJ, Santiago R (2011) Cell wall composition as a maize defense mechanism against corn borers. Phytochemistry 72:365–371

    Article  PubMed  CAS  Google Scholar 

  • Bartolome B, Faulds CB, Williamson G (1997) Enzymic release of ferulic acid from barley spent grain. J Cereal Sci 25:285–288

    Article  CAS  Google Scholar 

  • Bergvinson DJ, Arnason JT, Hamilton RI (1997) Phytochemical changes during recurrent selection for resistance to the European corn borer. Crop Sci 37:1567–1572

    Article  CAS  Google Scholar 

  • Bernays EA, Janzen DH (1988) Saturniid and sphingid caterpillars: two ways to eat leaves. Ecology 69:1153–1160

    Article  Google Scholar 

  • Bily AC, Reid LM, Taylor JH, Johnston D, Malouin C, Burt AJ, Bakan B, Regnault-Roge C, Pauls KP, Arnason JT, Philogene BJR (2003) Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology 93:712–719

    Article  PubMed  CAS  Google Scholar 

  • Braman SK, Duncan RR, Engelke MC, Hanna WW, Hignight K, Rush D (2002) Grass species and endophyte effects on survival and development of fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol 95:487–492

    Article  PubMed  CAS  Google Scholar 

  • Brett CT, Waldron K (1996) Cell wall formation. In: Brett CT, Waldron K (eds) Physiology and biochemistry of plant cell walls. Chapman & Hall, London, pp 75–111

    Google Scholar 

  • Buanafina MM, Langdon T, Hauck B, Dalton SJ, Morris P (2006) Manipulating the phenolic acid content and digestibility of italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl Biochem Biotech 129–132:416–426

    Google Scholar 

  • Buanafina MM, Langdon T, Hauck B, Dalton S, Morris P (2008) Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotech J 6:264–280

    Article  CAS  Google Scholar 

  • Buanafina MM, Langdon T, Hauck B, Dalton S, Timms-Taravella E, Morris P (2010) Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea). Plant Biotech J 8:316–331

    Article  CAS  Google Scholar 

  • Bultman TL, Bell GD (2003) Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos 103:182–190

    Article  Google Scholar 

  • Bunzel M, Ralph J, Bruning P, Steinhart H (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. J Agric Food Chem 54:6409–6418

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Mccann MC (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 52–108

    Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Clissold FJ (2008) The biomechanics of chewing and plant fracture: mechanisms and implications. Adv Insect Phys 34:317–372

    Article  Google Scholar 

  • Clissold FJ, Sanson GD, Read J (2006) The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. J Anim Ecol 75:1000–1013

    Article  PubMed  CAS  Google Scholar 

  • Clissold FJ, Sanson GD, Read J, Simpson SJ (2009) Gross vs. net income: how plant toughness affects performance of an insect herbivore. Ecology 90:3393–3405

    Article  PubMed  Google Scholar 

  • Dien BS, Sarath G, Pedersen J, Vogel K, Jung H-JG, Sattler S, Casler MD, Michell RB, Cotta MA (2008) Energy crops for ethanol: a processing perspective. In: Proceedings of the 5th International Crop Science Congress

  • Dowd PF, Johnson ET (2009) Differential resistance of switchgrass Panicum virgatum L lines to fall armyworms Spodoptera frugiperda (J.E. Smith). Gen Res Crop Evol 56:1077–1089

    Article  Google Scholar 

  • Farrar RR Jr, Barbour JD, Kennedy GG (1989) Quantifying food consumption and growth in insects. Ann Entomol Soc Am 82:593–598

    Google Scholar 

  • Faulds CB, Williamson G (1999) The role of hydroxycinnamates in the plant cell wall. J Sci Food Agric 79:393–395

    Article  CAS  Google Scholar 

  • Felton GW (2005) Indigestion is a plant’s best defense. Proc Natl Acad Sci USA 102:18771–18772

    Article  PubMed  CAS  Google Scholar 

  • Fescemyer HW, Rose RL, Sparks TC, Hammond AM (1986) Juvenile hormone esterase activity in developmentally synchronous ultimate stadium larvae of the migrant insect, Anticarsia gemmatalis. J Insect Physiol 32:1055–1063

    Article  CAS  Google Scholar 

  • Funk C, Ralph J, Steinhart H, Bunzel M (2005) Isolation and structural characterisation of 8-O-4/8-O-4- and 8–8/8-O-4-coupled dehydrotriferulic acids from maize bran. Phytochemistry 66:363–371

    Article  PubMed  CAS  Google Scholar 

  • Guy RN, Leppla NC, Rye JR, Green CW, Barette SL, Hollien KA (1985) Trichoplusia ni. In: Sing P, Moore RF (eds) Handbook of insect rearing, vol 2. Elsevier, Amsterdam, pp 487–494

    Google Scholar 

  • Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of Gramineae by ultraviolet fluorescence microscopy. Nature 259:508–510

    Article  CAS  Google Scholar 

  • Hartley RD (1972) p-Coumaric and ferulic acid components of cell-walls of ryegrass and their relationships with lignin and digestibility. J Sci Food Agric 23:1347–1354

    Article  CAS  Google Scholar 

  • Hartley RD, Ford CW (1989) Phenolic constituents of plant-cell walls and wall biodegradability. ACS Symp Ser 399:137–145

    Article  CAS  Google Scholar 

  • Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu F, Kim H (2009) Grass lignin acylation: p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. Planta 229:1253–1267

    Article  PubMed  CAS  Google Scholar 

  • Heldt HW (2011) Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components. In: Heldt HW, Piechulla B (eds) Plant Biochemistry, 2nd edn. Academic Press, New York, pp 435–454

    Google Scholar 

  • Hoffmann WA, Poorter H (2002) Avoiding bias in calculations of relative growth rate. Ann Bot 80:37–42

    Article  Google Scholar 

  • Hunt JW, Dean AP, Webster RE, Johnson GN, Ennos AR (2008) A novel mechanism by which silica defends grasses against herbivory. Ann Bot 102:653–656

    Article  PubMed  CAS  Google Scholar 

  • Iiyama K, Lam TBT, Stone BA (1994) Covalent cross-links in the cell-wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310

    Article  PubMed  CAS  Google Scholar 

  • Jacquet G, Pollet B, Lapierre C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751

    Article  CAS  Google Scholar 

  • Jakob K, Zhou F, Paterson AH (2009) Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell Dev Biol Plant 45:291–305

    Article  CAS  Google Scholar 

  • Keathley CP, Potter DA (2011) Does modification of tall fescue leaf texture and forage nutritive value for improved livestock performance increase suitability for a grass-feeding caterpillar? Crop Sci 51:370–380

    Article  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol Control 46:57–71

    Article  Google Scholar 

  • Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defences to herbivory. Ann Bot 86:913–920

    Article  Google Scholar 

  • Martin MM (1991) The evolution of cellulose digestion in insects. Philos Trans R Soc Lond B Biol Sci 333:281–288

    Article  Google Scholar 

  • Massey FP, Ennos AR, Hartley SE (2006) Silica in grasses as a defense against insect herbivores: contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603

    Article  PubMed  Google Scholar 

  • Mueller-Harvey I, Hartley RD (1986) Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85

    Article  CAS  Google Scholar 

  • Nabity PD, Zangerl AR, Berenbaum MR, DeLucia EH (2011) Bioenergy crops Miscanthus × giganteus and Panicum virgatum reduce growth and survivorship of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 104:459–464

    Article  PubMed  Google Scholar 

  • Nagoshi RN, Meagher RL, Adamczyk JJ, Braman SK, Brandenburg RL, Nuessly G (2006) New restriction fragment length polymorphisms in the cytochromeoxidase I gene facilitate host strain identification of fall armyworm (Lepidoptera: Noctuidae) populations in the southeastern United States. J Econ Entomol 99:671–677

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4

    Article  PubMed  CAS  Google Scholar 

  • Radford PJ (1967) Growth analysis formulae—their use and abuse. Crop Sci 7:171–175

    Article  Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994a) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  • Ralph J, Quideau S, Grabber JH, Hatfield RD (1994b) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell-walls. J Chem Soc Perkin Trans 1:3485–3498

    Article  Google Scholar 

  • Raps A, Vidal S (1998) Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114:541–547

    Article  Google Scholar 

  • Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93:1546–1565

    Article  PubMed  Google Scholar 

  • Sanson G (2006) The biomechanics of browsing and grazing. Am J Bot 93:1531–1545

    Article  PubMed  Google Scholar 

  • Santiagio R, Butron A, Reid LM, Aranson JT, Sandoya G, Souto XC, Malvar RA (2006) Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). J Agric Food Chem 54:9140–9144

    Article  Google Scholar 

  • Sleper DA, West CP (1996) Tall fescue. In: Moser LE, Buxton DR, Casler MD (eds) Cool-season forage grasses. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, pp 471–502

    Google Scholar 

  • Tscharntke T, Greiler HJ (1995) Insect communities, grasses, and grasslands. Ann Rev Entomol 40:535–558

    Article  CAS  Google Scholar 

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Article  Google Scholar 

  • Vincent JFV (1991) Strength and fracture of grasses. J Mater Sci 26:1947–1950

    Article  Google Scholar 

  • Wang Z-Y, Ge Y (2006) Invited review: recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18

    Google Scholar 

  • Wende G, Fry SC (1997) O-feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans. Phytochemistry 44:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Whilstler RL, Richards EL (1970) Hemicelluloses. In: Pigman W, Horton D (eds) The carbohydrates, vol 2a. Academic Press, New York, pp 447–469

    Google Scholar 

  • Wright W, Illius AW (1995) A comparative study of the fracture properties of five grasses. Funct Ecol 9:269–278

    Article  Google Scholar 

Download references

Acknowledgments

Authors’ acknowledge the National Research Initiative or Agriculture and Food Research Initiative Competitive Grants Program grant No. 2008-02863 from the USDA National Institute of Food and Agriculture, for funding. We thank IBERS (Institute of Biological, Environmental and Rural Sciences) at Aberystwyth University, UK for permission to use the plant material in the current work, Robert Meagher for providing eggs of the rice strain, and James Marden for statistical consultation and allowing HWF to perform experiments involving insects in his laboratory and environmental chamber. Additional support for HWF was from the NSF IOS Grant No. 0950416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia M. de O. Buanafina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buanafina, M.M.O., Fescemyer, H.W. Modification of esterified cell wall phenolics increases vulnerability of tall fescue to herbivory by the fall armyworm. Planta 236, 513–523 (2012). https://doi.org/10.1007/s00425-012-1625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1625-y

Keywords

Navigation