Skip to main content

Advertisement

Log in

Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Potato steroidal glycoalkaloids (SGAs) are toxic secondary metabolites whose total content in tubers must be regulated. SGAs are biosynthesized by the sterol branch of the mevalonic acid/isoprenoid pathway. In a previous study, we showed a correlation between SGA levels and the abundance of transcript coding for HMG-CoA reductase 1 (HMG1) and squalene synthase 1 (SQS1) in potato tissues and potato genotypes varying in SGA content. Here, Solanum tuberosum cv. Desirée (low SGA producer) was transformed with a gene construct containing the coding region of either HMG1 or SQS1 of Solanum chacoense Bitt. clone 8380-1, a high SGA producer. SGA levels in transgenic HMG-plants were either greater than (in eight of 14 plants) or no different from untransformed controls, whereas only four of 12 SQS-transgenics had greater SGA levels than control, as determined by HPLC. Quantitative real-time PCR was used to estimate relative steady-state transcript levels of isoprenoid-, steroid-, and SGA-related genes in leaves of the transgenic plants compared to nontransgenic controls. HMG-transgenic plants exhibited increased transcript accumulation of SQS1, sterol C24-methyltransferase type1 (SMT1), and solanidine glycosyltransferase 2 (SGT2), whereas SQS-transgenic plants, had consistently lower transcript levels of HMG1 and variable SMT1 and SGT2 transcript abundance among different transgenics. HMG-transgenic plants exhibited changes in transcript accumulation for some sterol biosynthetic genes as well. Taken together, the data suggest coordinated regulation of isoprenoid metabolism and SGA secondary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HMGR:

3-Hydroxy-3-methylglutaryl coenzyme A reductase

CAS:

Cycloartenol synthase

Chc80-1:

S. chacoense clone 8380-1

CYP51G:

Obtusifoliol 14-α-demethylase

DWF:

DWARF

FK:

Fackel

HYD1:

C-8 sterol isomerase

LAS:

Lanosterol synthase

SGA:

Steroidal glycoalkaloids

SGT1:

Solanidine galactosyltransferase

SGT2:

Solanidine glucosyltransferase

SGT3:

Steroidal glycoalkaloid rhamnosyltransferase

SMO:

4- α methyl oxidase

SMT:

Sterol C24-methyltransferase

SQS:

Squalene synthase

References

  • Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206

    Article  CAS  Google Scholar 

  • Arnqvist L, Dutta PC, Jonsson L, Sitbon F (2003) Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol 131:1792–1799

    Article  PubMed  CAS  Google Scholar 

  • Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the alpha-solanine and alpha-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  • Bender J, Celenza JL (2009) Indolic glucosinolates at the crossroads of tryptophan metabolism. Phytochem Rev 8:25–37

    Article  CAS  Google Scholar 

  • Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457

    Article  PubMed  CAS  Google Scholar 

  • Bergenstråhle A, Tillberg E, Jonsson L (1992) Regulation of glycoalkaloid accumulation in potato tuber disks. J Plant Physiol 140:269–275

    Article  Google Scholar 

  • Bergenstråhle A, Borga P, Jonsson MV (1996) Sterol composition and synthesis in potato tuber discs in relation to glycoalkaloid synthesis. Phytochemistry 41:155–161

    Article  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  • Choi D, Ward BL, Bostock RM (1992) Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 4:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Bostock RM, Avdiushko S, Hildebrand DF (1994) Lipid-derived signals that discriminate wound- and pathogen- responsive isoprenoid pathways in plants: Methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA 91:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Dale MFB, Griffiths DW, Bain H, Todd D (1993) Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann Appl Biol 123:411–418

    Article  CAS  Google Scholar 

  • Dale S, Arró M, Becerra B, Morrice NG, Boronat A, Hardie DG, Ferrer A (1995) Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl Co-A reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl CoA reductase kinase. Eur J Biochem 233:506–513

    Article  PubMed  CAS  Google Scholar 

  • Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Diener AC, Li H, Zhou W-x, Whoriskey WJ, Nes WD, Fink GR (2000) STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell 12:853–870

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Cobb AH (1996) Improved high-performance liquid chromatographic method for the analysis of potato (Solanum tuberosum) glycoalkaloids. J Agric Food Chem 44:2705–2709

    Article  CAS  Google Scholar 

  • Fewell AM, Roddick JG (1997) Potato glycoalkaloid impairment of fungal development. Mycol Res 101:597–603

    Article  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    CAS  Google Scholar 

  • Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E (2009) Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot 60:4411–4421

    Article  PubMed  CAS  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organizational-structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Harker M, Holmberg N, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A, Safford R (2003) Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnol 1:113–121

    Article  CAS  Google Scholar 

  • Hey SJ, Powers SJ, Beale MH, Hawkins ND, Ward JL, Halford NG (2006) Enhanced seed phytosterol accumulation through expression of a modified HMG-CoA reductase. Plant Biotechnol 4:219–229

    Article  CAS  Google Scholar 

  • Holmberg N, Harker M, Gibbard CL, Wallace AD, Clayton JC, Rawlins S, Hellyer A, Safford R (2002) Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. Plant Physiol 130:303–311

    Article  PubMed  CAS  Google Scholar 

  • Holmberg N, Harker M, Wallace AD, Clayton JC, Gibbard CL, Safford R (2003) Co-expression of N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase and C24-sterol methyltransferase type 1 in transgenic tobacco enhances carbon flux towards end-product sterols. Plant J 36:12–20

    Article  PubMed  CAS  Google Scholar 

  • Kaneko K, Tanaka MW, Mitsuhashi H (1977) Dormantinol, a possible precursor in solanidine biosynthesis, from budding Veratrum grandiflorum. Phytochemistry 16:1247–1251

    Article  CAS  Google Scholar 

  • Knapp S, Coupland G, Uhrig H, Starlinger P, Salamini F (1998) Transposition of the maize transposable element Ac in Solanum tuberosum. Mol Gen Genet 213:285–290

    Article  Google Scholar 

  • Kolesnikova MD, Xiong QB, Lodeiro S, Hua L, Matsuda SPT (2006) Lanosterol biosynthesis in plants. Arch Biochem Biophys 447:87–95

    Article  PubMed  CAS  Google Scholar 

  • Krits P, Fogelman E, Ginzberg I (2007) Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227:143–150

    Article  PubMed  CAS  Google Scholar 

  • Lafta AM, Lorenzen JH (2000) Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. J Am Soc Hortic Sci 125:563–566

    CAS  Google Scholar 

  • Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange BM (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  PubMed  CAS  Google Scholar 

  • Lawson DR, Veilleux RE, Miller AR (1993) Biochemistry and genetics of S. chacoense steroidal alkaloids: natural resistance factors to the Colorado potato beetle. Curr Top Bot Res 1:335–352

    Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot 55:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S, Eshed Y, Aharoni A (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 148:2021–2049

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Shepherd LVT, Allen PV, Maccree MM, Rockhold DR, Corsini DL, Davies HV, Belknap WR (2005) Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci 168:267–273

    Article  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Whitworth J, Maccree MM, Rockhold DR, Stewart D, Davies HV, Belknap WR (2006) The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67:1590

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007) Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334

    Article  PubMed  CAS  Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    Article  PubMed  CAS  Google Scholar 

  • Morant M, Ekstrøm C, Ulvskov P, Kristensen C, Rudemo M, Olsen CE, Hansen J, Jørgensen K, Jørgensen B, Møller BL, Bak S (2010) Metabolomic, transcriptional, hormonal, and signaling cross-talk in Superroot2. Mol Plant 3:192–211

    Article  PubMed  CAS  Google Scholar 

  • Nes WD, Venkatramesh M (1999) Enzymology of phytosterol transformations. Crit Rev Biochem Mol Biol 34:81–93

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Suzuki M, Kikuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proc Natl Acad Sci USA 106:725–730

    Article  PubMed  CAS  Google Scholar 

  • Osborne TF (1991) Single nucleotide resolution of sterol regulatory region in promoter for 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Biol Chem 266:13947–13951

    PubMed  CAS  Google Scholar 

  • Osman S, Sinden SL, Deahl K, Moreau R (1987) The metabolism of solanidine by microsomal fractions from Solanum chacoense. Phytochemistry 26:3163–3165

    Article  CAS  Google Scholar 

  • Percival G, Dixon G, Sword A (1994) Glycoalkaloid concentration of potato tubers following continuous illumination. J Sci Food Agric 66:139–144

    Article  CAS  Google Scholar 

  • Percival GC, Karim MS, Dixon GR (1998) Influence of light enhanced glycoalkaloids on resistance of potato tubers to Fusarium sulphureum and Fusarium solani var coeruleum. Plant Pathol 47:665–670

    Article  CAS  Google Scholar 

  • Ronning CM, Sanford LL, Kobayashi RS, Kowalski SP (1998) Foliar leptine production in segregating F1, inter-F1, and backcross families of Solanum chacoense Bitter. Am J Potato Res 75:137–143

    Article  CAS  Google Scholar 

  • Ronning CM, Stommel JR, Kowalski SP, Sanford LL, Kobayashi RS, Pineada O (1999) Identification of molecular markers associated with leptine production in a population of Solanum chacoense Bitter. Theor Appl Genet 98:39–46

    Article  CAS  Google Scholar 

  • Sanford LL, Deahl KL, Sinden SL, Ladd TL (1992) Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance. Am Potato J 69:693–703

    Article  CAS  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1996) Segregation of leptines and other glycoalkaloids in Solanum tuberosum (4x) × S. chacoense (4x) crosses. Am Potato J 73:21–33

    Article  CAS  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1997) Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J 74:15–21

    Article  CAS  Google Scholar 

  • Sawai S, Akashi T, Sakurai N, Suzuki H, Shibata D, Ayabe S, Aoki T (2006) Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. Plant Cell Physiol 47:673–677

    Article  PubMed  CAS  Google Scholar 

  • Schaller H, Grausem B, Benveniste P, Chye ML, Tan CT, Song YH, Chua NH (1995) Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol 109:761–770

    PubMed  CAS  Google Scholar 

  • Seo J-W, Jeong J-H, Shin C-G, Lo S-C, Han S-S, Yu K-W, Harada E, Han J-Y, Choi Y-E (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877

    Article  PubMed  CAS  Google Scholar 

  • Shih M, Kuč J (1973) Incorporation of C-14 from acetate and mevalonate into rishitin and steroid glycoalkaloids by potato tuber slices inoculated with Phytophthora infestans. Phytopathology 63:826–829

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Deahl KL (1986) Segregation leptine glycoalkaloids in Solanum chacoense Bitter. J Agric Food Chem 34:372–377

    Article  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol 7:126–131

    Article  CAS  Google Scholar 

  • Stermer BA, Bianchini GM, Korth KL (1994) Regulation of HMG-CoA reductase activity in plants. J Lipid Res 35:1133–1140

    PubMed  CAS  Google Scholar 

  • Suzuki M, Xiang T, Ohyama K, Seki H, Saito K, Muranaka T, Hayashi H, Katsube Y, Kushiro T, Shibuya M, Ebizuka Y (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571

    Article  PubMed  CAS  Google Scholar 

  • Valkonen JPT, Keskitalo M, Vasara T, Pietila L (1996) Potato glycoalkaloids: a burden or a blessing? Crit Rev Plant Sci 15:1–20

    CAS  Google Scholar 

  • Wentzinger LF, Bach TJ, Hartmann M-A (2002) Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Plant Physiol 130:334–346

    Article  PubMed  CAS  Google Scholar 

  • Yang ZB, Park HS, Lacy GH, Cramer CL (1991) Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme-A reductase genes by wounding and pathogen challenge. Plant Cell 3:397–405

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Last RL (1996) Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8:2235–2244

    Article  PubMed  CAS  Google Scholar 

  • Zook MN, Kuč JA (1991) Induction of sesquiterpene cyclase and suppression of squalene synthetase activity in elicitor treated or fungal infected potato tuber tissue. Physiol Mol Plant Pathol 39:377–390

    Article  CAS  Google Scholar 

  • Zulak K, Cornish A, Daskalchuk T, Deyholos M, Goodenowe D, Gordon P, Klassen D, Pelcher L, Sensen C, Facchini P (2007) Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225:1085–1106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pini Krits and Zechariah Tanami from the Volcani Center for technical assistance. This research was supported by Research Grant No. IS-4134-08 from BARD, The United States-Israel Binational Agricultural Research and Development Fund, and is a contribution No. 108/2011 from the ARO, The Volcani Center, Bet Dagan, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idit Ginzberg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzberg, I., Thippeswamy, M., Fogelman, E. et al. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta 235, 1341–1353 (2012). https://doi.org/10.1007/s00425-011-1578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1578-6

Keywords

Navigation