Skip to main content
Log in

Stress responses to phenol in Arabidopsis and transcriptional changes revealed by microarray analysis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phenols are toxic, environmentally persistent products of the chemical industry that are capable of bioaccumulation and biomagnifications in the food chain. Little is known of how plants respond to this compound. To understand the transcriptional changes under phenol, microarray experiments on Arabidopsis thaliana were performed. Microarray results revealed numerous perturbations in signaling and metabolic pathways. The results indicated that the phenol response was related to reactive oxygen species (ROS) accumulation and oxidative conditions, including ROS generated for pathogen defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

CAT:

Catalases

POD:

Peroxidase

References

  • Ali S, Fernandez-Lafuente R, Cowan DA (1998) Meta pathway degradation of phenolics by thermophilic Bacilli. Enzyme Microb Tech 23:462–468

    Article  CAS  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colón-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994

    Article  PubMed  CAS  Google Scholar 

  • Annadurai G, Rajesh Babu S, Mahesh KPO, Murugesan T (2000) Absorption and biodegradation of phenol by chitosan immobilized Pseudomonas putida (NICM 2174). Bioproc Eng 22:493–501

    Article  CAS  Google Scholar 

  • Beyer WF, Fridovich Y (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  PubMed  CAS  Google Scholar 

  • Burritt DJ (2008) The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant Cell Environ 31:1416–1431

    Article  PubMed  CAS  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, Meagher RB (2002) Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0032

  • Dixon DP, Cole DJ, Edwards R (2000) Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch Biochem Biophys 384:407–412

    Article  PubMed  CAS  Google Scholar 

  • Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductases. Drug Metab Drug Interact 12:189–206

    Article  CAS  Google Scholar 

  • EPA (1979) Phenol Ambient Water Quality Criteria. Office of the Planning and Standards. Environ Protect Agency, Washington, DC, pp 296–786

    Google Scholar 

  • Footitt S, Cornah JE, Pracharoenwattana I, Bryce JH, Smith SM (2007) The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2–1) mutant exhibits increased flowering but reduced reproductive success. J Exp Bot 58:2959–2968

    Article  PubMed  CAS  Google Scholar 

  • González G, Herrera G, García MT, Peña M (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Biores Technol 80:137–142

    Article  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Grudkowska M, Zagdańska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Polonica 51:609–624

    CAS  Google Scholar 

  • Gurujeyalakshmi G, Oreil P (1988) Isolation of phenol degrading Bacillus stearothermophilus and partial characterization of the phenol hydroxylase. Appl Environ Microbiol 55:500–502

    Google Scholar 

  • Hao OJ, Kim MH, Seagren EA, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter sp. Chemosphere 46:797–807

    Article  PubMed  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113

    Article  CAS  Google Scholar 

  • Keller E, Cosgrove DJ (1995) Expansins in growing tomato leaves. Plant J 8:795–802

    Article  PubMed  CAS  Google Scholar 

  • Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31:389–404

    Article  PubMed  CAS  Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grün S, Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 40:567–575

    Article  CAS  Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO 2 by systemic signaling. Plant Physiol 147:732–746

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Weisman D, Ye Y, Cui B, Huang Y, Wang Z (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  • MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol 99:872–878

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Overview of phytotransformation and control of wastes. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. John Wiley and Sons, New Jersey, pp 3–58

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagpa P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–574

    Article  Google Scholar 

  • Nuhoglu A, Yakin B (2005) Modelling of phenol removal in a batch reactor. Proc Biochem 40:233–239

    Google Scholar 

  • O’Malley RC, Lynn DG (2000) Expansin message regulation in parasitic angiosperms: marking time in development. Plant Cell 12:1455–1465

    Article  PubMed  Google Scholar 

  • Over MC, Rehon HJ (1995) Biodegradation of 2-chloroethanol by freely suspended and adsorbed immobilized Pseudomonas putida 11S2 in soil. Appl Microbiol Biotechnol 43:143–149

    Article  Google Scholar 

  • Owens IS, Basu NK, Banerjee R (2005) UDP-glucuronosyltransferases: gene structures of UGT1 and UGT2 families. Methods Enzymol 400:1–22

    Article  PubMed  CAS  Google Scholar 

  • Pašková V, Hilscherová K, Feldmannová M, Bláha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environ Toxicol Chem 25:3238–3245

    Article  Google Scholar 

  • Penninckx I, Eggermont K, Terras FRG, Thomma B, Samblanx GWD, Buchala A, Metraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed  CAS  Google Scholar 

  • Petruschka L, Burchardf G, Muller C, Weihe C, Herrmann H (2001) The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation. Mole Genet Genom 266:199–206

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Raucy JL, Allen SW (2001) Recent advances in P450 research. Pharmacogen J 1:178–186

    Article  CAS  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  CAS  Google Scholar 

  • Schei PM, Young LY (1998) Isolation and characterization of phenol degrading denitrifying bacteria. Appl Environ Microbiol 64:2432–2438

    Google Scholar 

  • Stiborová M, Suchá V, Miksanová M, Páca J Jr, Páca J (2003) Hydroxylation of phenol to catechol by Candida tropicalis: involvement of cytochrome P450. Gen Physiol Biophys 22:167–179

    PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F (2006) Gene expression profiles of O3-treated Arabidopsis plants. Plant Cell Environ 29:1686–1702

    Article  PubMed  CAS  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Article  PubMed  CAS  Google Scholar 

  • Weisman D, Alkio M, Colón-Carmona A (2010) Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC Plant Biol 10:59

    Article  PubMed  Google Scholar 

  • Wild E, Dent J, Barber JL, Thomas GO, Jones KC (2004) A novel analytical approach for visualizing and tracking organic chemicals in plants. Environ Sci Technol 38:4195–4199

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel H, Overmyer K, Kangasjärvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25:717–726

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Zümriye A, Gültaç B (1999) Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized P. putida beads. Enzyme Microbial Technol 25:344–348

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported financially by Science and Technology Commission of Shanghai Municipality (2009), the Key Project Fund of the Shanghai Municipal Committee of Agriculture (No. 2008-7-5), Shanghai Natural Science Fund (11ZR1432400) and the Development Fund of Shanghai Academy of Agricultural Sciences [Nongkefa 2011(10)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Zhong Wu or Quan-Hong Yao.

Additional information

J. Xu and Z.-H. Su contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Su, ZH., Chen, C. et al. Stress responses to phenol in Arabidopsis and transcriptional changes revealed by microarray analysis. Planta 235, 399–410 (2012). https://doi.org/10.1007/s00425-011-1498-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1498-5

Keywords

Navigation