Skip to main content

Advertisement

Log in

Overexpression of the pepper antimicrobial protein CaAMP1 gene regulates the oxidative stress- and disease-related proteome in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Proteomics facilitates our understanding of cellular processes and network functions in the plant defense response during abiotic and biotic stresses. Here, we demonstrate that the ectopic expression of the Capsicum annuum antimicrobial protein CaAMP1 gene in Arabidopsis thaliana confers enhanced tolerance to methyl viologen (MV)-induced oxidative stress, which is accompanied by lower levels of lipid peroxidation. Quantitative comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified some of the oxidative stress- and disease-related proteins that are differentially regulated by CaAMP1 overexpression in Arabidopsis leaves. Antioxidant- and defense-related proteins, such as 2-cys peroxiredoxin, l-ascorbate peroxidase, peroxiredoxin, glutathione S-transferase and copper homeostasis factor, were up-regulated in the CaAMP1 transgenic leaf tissues. In contrast, GSH-dependent dehydroascorbate reductase and WD-40 repeat family protein were down-regulated by CaAMP1 overexpression. In addition, CaAMP1 overexpression enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and also H2O2 accumulation in Arabidopsis. The identified antioxidant- and defense-related genes were differentially expressed during MV-induced oxidative stress and Pst DC3000 infection. Taken together, we conclude that CaAMP1 overexpression can regulate the differential expression of defense-related proteins in response to environmental stresses to maintain reactive oxygen species (ROS) homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

APX:

l-ascorbate peroxidase

CHF:

Copper homeostasis factor

DHAR:

GSH-dependent dehydroascorbate reductase

GRP:

Glycine-rich protein

GST:

Glutathione S-transferase

MV:

Methyl viologen

OX:

Overexpression

PAGE:

Polyacrylamide gel electrophoresis

PAMP:

Pathogen-associated molecular pattern

Prx:

Peroxiredoxin

Pst :

Pseudomonas syringae pv. tomato

ROS:

Reactive oxygen species

References

  • Alvarez S, Galant A, Jez JM, Hicks LM (2011) Redox-regulatory mechanisms induced by oxidative stress in Brassica juncea roots monitored by 2-DE proteomics. Proteomics 11:1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Babbs CF, Pham JA, Coolbaugh RC (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol 90:1267–1270

    Article  PubMed  CAS  Google Scholar 

  • Baginsky S, Gruissem W (2004) Chloroplast proteomics: potentials and challenges. J Exp Bot 55:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91:7017–7021

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842

    Article  CAS  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defense gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    PubMed  CAS  Google Scholar 

  • Dietz KJ (2008) Redox signal integration: from stimulus to networks and genes. Physiol Plant 133:459–468

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Horling F, Konig J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, de Miranda SM, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    Article  PubMed  CAS  Google Scholar 

  • Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777

    Article  PubMed  CAS  Google Scholar 

  • Elvira MI, Galdeano MM, Gilardi P, Garcia-Luque I, Serra MT (2008) Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J Exp Bot 59:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Gharahdaghi F, Mische SM (1998) Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 19:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Gayoso C, Pomar F, Merino F, Bernal MA (2004) Oxidative metabolism and phenolic compounds in Capsicum annuum L. var. annuum infected by Phytophthora capasici Leon. Sci Horticult 102:1–13

    Article  CAS  Google Scholar 

  • Gronwald JW, Plaisance KL (1998) Isolation and characterization of glutathione S-transferase isozymes from sorghum. Plant Physiol 117:877–892

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Scandalios JG (1998) Two structurally similar maize cytosolic superoxide dismutase genes, Sod4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol 117:217–224

    Article  PubMed  CAS  Google Scholar 

  • Guan LM, Zhao J, Scandalios JG (2000) Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22:87–95

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals, antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    Article  PubMed  CAS  Google Scholar 

  • Harris ED (2003) Basic and clinical aspects of copper. Crit Rev Clin Lab Sci 40:547–586

    PubMed  CAS  Google Scholar 

  • Haslekas C, Grini PE, Nordgard SH, Thorstensen T, Viken MK, Nygaard V, Aalen RB (2003) ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress. Plant Mol Biol 53:313–326

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Thomas V, Truman B, Lilley K, Mansfield J, Grant M (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry 65:1805–1816

    Article  PubMed  CAS  Google Scholar 

  • Kamo M, Kawakami T, Miyatake N, Tsugita A (1995) Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 16:423–430

    Article  PubMed  CAS  Google Scholar 

  • Keller R, Renz FS, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    Article  PubMed  CAS  Google Scholar 

  • Kiba A, Nishihara M, Tsukatani N, Nakatsuka T, Kato Y, Yamamura S (2005) A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol 46:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Hwang BK (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790–800

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Hwang BK (2009) Functional roles of the pepper antimicrobial protein gene, CaAMP1, in abscisic acid signaling, and salt and drought tolerance in Arabidopsis. Planta 229:383–391

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Hwang IS, Choi HW, Hwang BK (2008) Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. Plant Physiol 148:1004–1020

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Lawrence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635–639

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  PubMed  CAS  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant–microorganism early interactions. J Integr Plant Biol 52:195–204

    Article  PubMed  CAS  Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Ryu SH, Jang IC, Kwon SY, Kim JG, Kwak SS (2004) Molecular cloning of a cytosolic ascorbate peroxidase cDNA from cell cultures of sweet potato and its expression in response to stress. Mol Genet Genomics 271:339–346

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Porubleva L, Chitnis PR (2000) Proteomics: a powerful tool in the post-genomic era. Indian J Biochem Biophys 37:360–368

    PubMed  CAS  Google Scholar 

  • Rate DN, Greenberg JT (2001) The Arabidopsis aberrant growth and death2 mutant shows resistance to Pseudomonas syringae and reveals a role for NPR1 in suppressing hypersensitive cell death. Plant J 27:203–211

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  PubMed  CAS  Google Scholar 

  • Sappl PG, Onate-Sanchez L, Singh KB, Millar AH (2004) Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol Biol 54:205–219

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889

    Article  PubMed  CAS  Google Scholar 

  • Subramanian B, Bansal VK, Kav NN (2005) Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans. J Agric Food Chem 53:313–324

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Ren H, Liu R, Li B, Wu T, Sun F, Liu H, Wang X, Dong H (2010) An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant Microbe Interact 23:1470–1485

    Article  PubMed  CAS  Google Scholar 

  • Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180:65–77

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Chen Z, Du H, Liu Y, Klessig DF (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:993–1005

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JJ (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • van Cutsem E, Simonart G, Degand H, Faber AM, Morsomme P, Boutry M (2011) Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response. Proteomics 11:440–454

    Article  PubMed  Google Scholar 

  • van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508

    Article  PubMed  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Porter NA (2003) Specificity of the ferrous oxidation of xylenol orange assay: analysis of autoxidation products of cholesteryl arachidonate. Anal Biochem 313:319–326

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Vodkin LO, DeLucia E, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant Microbe Interact 18:1161–1174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Next Generation BioGreen21 Program (Plant Molecular Breeding Center No. PJ008027 and No. PJ008222), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Additional information

The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number AY548741.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.C., Hwang, I.S. & Hwang, B.K. Overexpression of the pepper antimicrobial protein CaAMP1 gene regulates the oxidative stress- and disease-related proteome in Arabidopsis . Planta 234, 1111–1125 (2011). https://doi.org/10.1007/s00425-011-1473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1473-1

Keywords

Navigation