Skip to main content
Log in

Transcriptional control of aspartate kinase expression during darkness and sugar depletion in Arabidopsis: involvement of bZIP transcription factors

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Initial steps of aspartate-derived biosynthesis pathway (Asp pathway) producing Lys, Thr, Met and Ile are catalyzed by bifunctional (AK/HSD) and monofunctional (AK-lys) aspartate kinase (AK) enzymes. Here, we show that transcription of all AK genes is negatively regulated under darkness and low sugar conditions. By using yeast one-hybrid assays and complementary chromatin immunoprecipitation analyses in Arabidopsis cells, the bZIP transcription factors ABI5 and DPBF4 were identified, capable of interacting with the G-box-containing enhancer of AK/HSD1 promoter. Elevated transcript levels of DPBF4 and ABI5 under darkness and low sugar conditions coincide with the repression of AK gene expression. Overexpression of ABI5, but not DPBF4, further increases this AK transcription suppression. Concomitantly, it also increases the expression of asparagines synthetase 1 (ASN1) that shifts aspartate utilization towards asparagine formation. However, in abi5 or dpbf4 mutant and abi5, dpbf4 double mutant the repression of AK expression is maintained, indicating a functional redundancy with other bZIP-TFs. A dominant-negative version of DPBF4 fused to the SRDX repressor domain of SUPERMAN could counteract the repression and stimulate AK expression under low sugar and darkness in planta. This effect was verified by showing that DPBF4-SRDX fails to recognize the AK/HSD1 enhancer sequence in yeast one-hybrid assays, but increases heterodimmer formation with DPBF4 and ABI5, as estimated by yeast two-hybrid assays. Hence it is likely that heterodimerization with DPBF4-SRDX inhibits the binding of redundantly functioning bZIP-TFs to the promoters of AK genes and thereby releases the repressing effect. These data highlight a novel transcription control of the chloroplast aspartate pathway that operates under energy limiting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AK/HSD1:

Bifunctional aspartate kinase-homoserine dehydrogenase

AK-lys1(2, 3):

Monofunctional aspartate kinases

bZIP-TF:

Basic DNA binding domain—leucine zipper—transcription factor

ChIP:

Chromatin immunoprecipitation

DPBF, DC3:

Promoter-binding factor

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W (2009) A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell 21:747–761

    Article  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  Google Scholar 

  • Arroyo A, Bossi F, Finkelstein RR, Leon P (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133:231–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baena-González E (2010) Energy signaling in the regulation of gene expression during stress. Mol Plant 3:300–313

    Article  PubMed  Google Scholar 

  • Baena-González E, Sheen J (2008) Convergent energy and stress signalling. Trends Plant Sci 13:474–482

    Article  PubMed Central  PubMed  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  PubMed  Google Scholar 

  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F (2002) The homologous DPBF1 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14:1391–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bensmihen S, Giraudat J, Parcy F (2005) Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the DPBF1 family during Arabidopsis thaliana embryo maturation. J Exp Bot 56:597–603

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao R, Salchert K, Bakó L, Ökrész L, Szabados L, Muranaka T, Machida Y, Schell J, Koncz C (1999) Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc Natl Acad Sci USA 96:5322–5327

    Article  CAS  PubMed  Google Scholar 

  • Bläsing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281

    Article  PubMed Central  PubMed  Google Scholar 

  • Bowler C, Benvenuto G, Laflamme P, Molino D, Probst AV, Tariq M, Paszkowski J (2004) Chromatin techniques for plant cells. Plant J 39:776–789

    Article  CAS  PubMed  Google Scholar 

  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Craciun A, Jacobs M, Vauterin M (2000) Arabidopsis loss-of-function mutant in the lysine pathway points out complex regulation mechanisms. FEBS Lett 487:234–238

    Article  CAS  PubMed  Google Scholar 

  • Curien G, Ravanel S, Robert M, Dumas R (2005) Identification of six novel allosteric effectors of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase isoforms; Physiological context sets the specificity. J Biol Chem 280:41178–41183

    Article  CAS  PubMed  Google Scholar 

  • Curien G, Laurencin M, Robert-Genthon M, Dumas R (2007) Allosteric monofunctional aspartate kinases from Arabidopsis. FEBS J 274:164–176

    Article  CAS  PubMed  Google Scholar 

  • Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cárdenas ML, Dumas R (2009) Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 5:271

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46:890–900

    Article  CAS  PubMed  Google Scholar 

  • Farrás R, Ferrando A, Jásik J, Ökrész L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1-SnRK protein kinase mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20:2742–2756

    Article  PubMed  Google Scholar 

  • Ferrando A, Farrás R, Jasik J, Schell J, Koncz C (2000) Intron-tagged epitope: a tool for facile detection and purification of proteins expressed in Agrobacterium-transformed plant cells. Plant J 22:553–560

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD (2005) Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 59:253–267

    Article  CAS  PubMed  Google Scholar 

  • Frankard V, Vauterin M, Jacobs M (1997) Molecular characterization of an Arabidopsis thaliana cDNA coding for a monofunctional aspartate kinase. Plant Mol Biol 34:233–242

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galili G (1995) Regulation of lysine and threonine synthesis. Plant Cell 7:899–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galili G (2002) New insights into the regulation and functional significance of lysine metabolism in plants. Annu Rev Plant Biol 53:27–43

    Article  CAS  PubMed  Google Scholar 

  • Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of asparagine synthetase 1 and proline dehydrogenase 2. Plant J 53:935–949

    Article  CAS  PubMed  Google Scholar 

  • Hiratsu K, Ohta M, Matsui K, Ohme-Takagi M (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett 514:351–354

    Article  CAS  PubMed  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  CAS  PubMed  Google Scholar 

  • Hiratsu K, Mitsuda N, Matsui K, Ohme-Takagi M (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem Biophys Res Commun 321:172–178

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droege-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jander G, Joshi V (2010) Recent progress in deciphering the biosynthesis of aspartate-derived amino acids in plants. Mol Plant 3:54–65

    Article  CAS  PubMed  Google Scholar 

  • Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152:1109–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang SG, Price J, Lin PC, Hong JC, Jang JC (2010) The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. Mol Plant 3:361–373

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11:1237–1251

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Ma J, Perret P, Li Z, Thomas TL (2002) Arabidopsis DPBF1 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol 130:688–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Peng SSY, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol 106:1347–1357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam HM, Hsieh MH, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J 16:345–353

    Article  CAS  PubMed  Google Scholar 

  • Less H, Galili G (2009) Coordinations between gene modules control the operation of plant amino acid metabolic networks. BMC Syst Biol 3:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 32:317–328

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Kinoshita N, Chua NH (2003) AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17:410–418

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Ohme-Takagi M (2010) Detection of protein-protein interactions in plants using the transrepressive activity of the EAR motif repression domain. Plant J 61:570–578

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci USA 106:5418–5423

    Article  CAS  PubMed  Google Scholar 

  • Németh K, Salchert K, Putnoky P, Bhalerao R, Koncz-Kálmán Z, Stankovic-Stangeland B, Bakó L, Mathur J, Ökresz L, Stabel S, Geigenberger P, Stitt M, Rédei GP, Schell J, Koncz C (1998) Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12:3059–3073

    Article  PubMed  Google Scholar 

  • Osuna D, Usadel B, Morcuende R, Gibon Y, Bläsing OE, Höhne M, Günter M, Kamlage B, Trethewey R, Scheible WR (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant J 49:463–491

    Article  CAS  PubMed  Google Scholar 

  • Price J, Laxmi A, St Martin SK, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rognes SE, Dewaele E, Aas SF, Jacobs M, Frankard V (2003) Transcriptional and biochemical regulation of a novel Arabidopsis thaliana bifunctional aspartate kinase-homoserine dehydrogenase gene isolated by functional complementation of a yeast hom6 mutant. Plant Mol Biol 51:281–294

    Article  CAS  PubMed  Google Scholar 

  • Schütze K, Harter K, Chaban C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13:247–255

    Article  PubMed  Google Scholar 

  • Tang G, Zhu-Shimoni JX, Amir R, Zchori IB, Galili G (1997) Cloning and expression of an Arabidopsis thaliana cDNA encoding a monofunctional aspartate kinase homologous to the lysine-sensitive enzyme of Escherichia coli. Plant Mol Biol 34:287–293

    Article  CAS  PubMed  Google Scholar 

  • Thum KE, Shasha DE, Lejay LV, Coruzzi GM (2003) Light- and carbon-signaling pathways. Modeling circuits of interactions. Plant Physiol 132:440–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thum KE, Shin MJ, Gutiérrez RA, Mukherjee I, Katari MS, Nero D, Shasha D, Coruzzi GM (2008) An integrated genetic, genomic and systems approach defines gene networks regulated by the interaction of light and carbon signaling pathways in Arabidopsis. BMC Syst Biol 2:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, Stitt M (2008) Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. Plant Physiol 146:1834–1861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vauterin M, Frankard V, Jacobs M (1999) The Arabidopsis thaliana DHDPS gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner. Plant Mol Biol 39:695–708

    Article  CAS  PubMed  Google Scholar 

  • Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dröge-Laser W (2006) Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 25:3133–3143

    Article  CAS  PubMed  Google Scholar 

  • Wiese A, Elzinga N, Wobbes B, Smeekens S (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. Plant Cell 16:1717–1729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshioka Y, Kurei S, Machida Y (2001) Identification of a monofunctional aspartate kinase gene of Arabidopsis thaliana with spatially and temporally regulated expression. Genes Genet Syst 76:189–198

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Shimoni JX, Galili G (1998) Expression of an Arabidopsis aspartate kinase/homoserine dehydrogenase gene is metabolically regulated by photosynthesis-related signals but not by nitrogenous compounds. Plant Physiol 116:1023–1028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu-Shimoni JX, Lev-Yadun S, Matthews B, Galili G (1997) Expression of an aspartate kinase homoserine dehydrogenase gene is subject to specific spatial and temporal regulation in vegetative tissues, flowers, and developing seeds. Plant Physiol 113:695–706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R. Finkelstein (University of California at Santa Barbara, CA, USA) for providing the ABI5-overexpressing and abi5-1 mutants, and Prof. NH Chua (Rockefeller University, New York, USA) for the pER8 vector. We thank Sabine Schaefer and Ingrid Reinsch for technical help, Dr. Haviva Eilenberg and Dr. Kenneth Berendzen for helpful discussions. This work was supported by Minna and James Heineman Foundation (G.G. and C.K.), European Union FP5 (OLRT-2001-00841) (C.K. and A.Z.), Deutsche Forschungsgemenischaft SFB635 and AFGN (KO 1438/12-1) (C.K.), DFG German-Israeli-Palestinian Trilateral grant (KO 1438/13-1) (CK and AZ.), and European Union COST FA0605 grant (G.G, C.K and A.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviah Zilberstein.

Additional information

S. Ufaz, V. Shukla, C. Koncz and A. Zilberstein have equally contributed to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ufaz, S., Shukla, V., Soloveichik, Y. et al. Transcriptional control of aspartate kinase expression during darkness and sugar depletion in Arabidopsis: involvement of bZIP transcription factors. Planta 233, 1025–1040 (2011). https://doi.org/10.1007/s00425-011-1360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1360-9

Keywords

Navigation