Skip to main content
Log in

Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Mannitol represents a major end product of photosynthesis in brown algae (Phaeophyceae), and is, with the β-1,3-glucan laminarin, the main form of carbon storage for these organisms. Despite its importance, little is known about the genes and enzymes responsible for the metabolism of mannitol in these seaweeds. Taking benefit of the sequencing of the Ectocarpus siliculosus genome, we focussed our attention on the first step of the synthesis of mannitol (reduction of the photo-assimilate fructose-6-phosphate), catalysed by the mannitol-1-phosphate dehydrogenase (M1PDH). This activity was measured in algal extracts, and was shown to be regulated by NaCl concentration in the reaction medium. Genomic analysis revealed the presence of three putative M1PDH genes (named EsM1PHD1, EsM1PDH2 and EsM1PDH3). Sequence comparison with orthologs demonstrates the modular architecture of EsM1PHD1 and EsM1PDH2, with an additional N-terminal domain of unknown function. In addition, gene expression experiments carried out on samples harvested through the diurnal cycle, and after several short-term saline and oxidative stress treatments, showed that EsM1PDH1 is the most highly expressed of these genes, whatever the conditions tested. In order to assess the activity of the corresponding protein, this gene was expressed in Escherichia coli. Cell-free extracts prepared from bacteria containing EsM1PDH1 displayed higher M1PDH activity than bacteria transformed with an empty plasmid. Further characterisation of recombinant EsM1PDH1 activity revealed its very narrow substrate specificity, salt regulation, and sensitivity towards an inhibitor of SH-enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ASW:

Artificial seawater

CCAP:

Culture collection of algae and protozoa

dbEST:

Database of expressed sequence tags

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

F6P:

Fructose-6-phosphate

HCA:

Hydrophobic cluster analysis

Hepes:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HK:

Hexokinase

H2O2 :

Hydrogen peroxide

LB:

Luria–Bertani medium

M1P:

Mannitol-1-phosphate

M1Pase:

Mannitol-1-phosphatase

M1PDH:

Mannitol-1-phosphate dehydrogenase

M2DH:

Mannitol-2-dehydrogenase

MOPS:

3-(N-morpholino)propanesulfonic acid

NCBI:

National Center for Biotechnology Information

pHMB:

p-Hydroxymercuribenzoate

PSU:

Practical salinity unit

PVP:

Polyvinylpyrrolidone

References

  • Akazaki H, Kawai F, Chida H, Matsumoto Y, Hirayama M, Hoshikawa K, Unzai S, Hakamata W, Nishio T, Park SY, Oku T (2008) Cloning, expression and purification of cytochrome c6 from the brown alga Hizikia fusiformis and complete X-ray diffraction analysis of the structure. Acta Cryst F64:674–680

    CAS  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R et al (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Callebaut I, Labesse G, Durand P, Poupon A, Canard L, Chomilier J, Henrissat B, Mornon JP (1997) Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives. Cell Mol Life Sci 53:621–645

    Article  CAS  PubMed  Google Scholar 

  • Charrier B, Coelho SM, Le Bail A, Tonon T, Michel G, Potin P, Kloareg B, Boyen C, Peters AF, Cock JM (2008) Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol 177:319–332

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AA, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in the brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Davidson IR, Reed RH (1985) The physiological significance of mannitol accumulation in brown algae: the role of mannitol as a compatible cytoplasmic solute. Phycologia 24:449–457

    Article  Google Scholar 

  • de Franco PO, Rousvoal S, Tonon T, Boyen C (2009) Whole genome survey of the glutathione transferase family in the brown algal model Ectocarpus siliculosus. Mar Genom 1:135–148

    Article  Google Scholar 

  • Dittami SM, Scornet D, Petit JL, Ségurens B, Da Silva C, Corre E, Dondrup M, Glatting KH, König R, Sterck L et al (2009) Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol 10:R66

    Article  PubMed  Google Scholar 

  • Eggert A, Raimund S, Van Den Daele K, Karsten U (2006) Biochemical characterization of mannitol metabolism in the unicellular red alga Dixoniella grisea (Rhodellophyceae). Eur J Phycol 41:405–413

    Article  CAS  Google Scholar 

  • Eggert A, Raimund S, Michalik D, West J, Karsten U (2007) Ecophysiological performance of the primitive red alga Dixoniella grisea (Rhodellophyceae) to irradiance, temperature and salinity stress: growth responses and the osmotic role of mannitol. Phycologia 46:22–28

    Article  Google Scholar 

  • Gravot A, Dittami SM, Rousvoal S, Lugan R, Eggert A, Collén J, Boyen C, Bouchereau A, Tonon T (2010) Diurnal oscillations of metabolite abundance and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytol 188:98–110

    Article  CAS  PubMed  Google Scholar 

  • Groisillier A, Hervé C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D et al (2010) MARINE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms. Microb Cell Fact 9:45

    Article  PubMed  Google Scholar 

  • Heesch S, Cho GY, Peters AF, Le Corguillé G, Falentin C, Boutet G, Coëdel S, Jubin C, Samson G, Corre E et al (2010) A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus provides large-scale assembly of the genome sequence. New Phytol 188:42–51

    Article  CAS  PubMed  Google Scholar 

  • Hellebust JA (1976) Effect of salinity on photosynthesis and mannitol synthesis in the green flagellate Platymonas suecica. Can J Bot 54:1735–1741

    Article  CAS  Google Scholar 

  • Hervé C, de Franco PO, Groisillier A, Tonon T, Boyen C (2008) New members of the glutathione transferase family discovered in red and brown algae. Biochem J 412:535–544

    Article  PubMed  Google Scholar 

  • Ikawa T, Watanabe T, Nisizawa K (1972) Enzymes involved in the last steps of the biosynthesis of mannitol in brown algae. Plant Cell Physiol 13:1017–1029

    CAS  Google Scholar 

  • Iwamoto K, Shiraiwa Y (2005) Salt-regulated mannitol metabolism in algae. Mar Biotech 7:407–415

    Article  CAS  Google Scholar 

  • Iwamoto K, Kawanobe H, Shiraiwa Y, Ikawa T (2001) Purification and characterization of mannitol-l-phosphatase in the red alga Caloglossa continua (Ceramiales, Rhodophyta). Mar Biotech 3:493–500

    Article  CAS  Google Scholar 

  • Iwamoto K, Kawanobe H, Ikawa T, Shiraiwa Y (2003) Characterization of salt-regulated mannitol-1-phosphate dehydrogenase in the red alga Caloglossa continua. Plant Physiol 133:893–900

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Wu LF, Tomich J, Saier MH Jr, Niehaus WG (1990) Corrected sequence of the mannitol (mtl) operon in Escherichia coli. Mol Microbiol 4:2003–2006

    Article  CAS  PubMed  Google Scholar 

  • Karsten U, West JA (1993) Ecophysiological studies on six species of the mangrove red algal genus Caloglossa. Aust J Plant Physiol 20:729–739

    Article  Google Scholar 

  • Karsten U, West JA, Mostaert AS, King RJ, Barrow KD, Kirst GO (1992) Mannitol in the red alga genus Caloglossa (Harvey). Agardh J J Plant Physiol 140:292–297

    CAS  Google Scholar 

  • Karsten U, Barrow KD, Nixdorf O, West JA, King RJ (1997) Characterization of mannitol metabolism in the mangrove red alga Caloglossa leprieurii (Montagne). J Agardh Planta 201:173–178

    Article  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Kirst GO (1975) Correlation between content of mannitol and osmotic stress in the brackish-water alga Platymonas subcordiformis. Z Pflanzenphysiol 76:316–325

    CAS  Google Scholar 

  • Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Google Scholar 

  • Le Bail A, Dittami SM, de Franco PO, Rousvoal S, Cock JM, Tonon T, Charrier B (2008) Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus. BMC Mol Biol 9:75

    Article  PubMed  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struc Biol 5:775–783

    Article  CAS  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:67–81

    Article  CAS  PubMed  Google Scholar 

  • Mostaert AS, Karsten U, King RJ (1995) Inorganic ions and mannitol in the red alga Caloglossa leprieurii (Ceramiales, Rhodophyta): response to salinity change. Phycologia 34:501–507

    Article  Google Scholar 

  • Pearson GA, Hoarau G, Lago-Leston A, Coyer JA, Kube M, Reinhardt R, Henckel K, Serrão ETA, Corre E, Olsen JA (2010) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotech 12:195–213

    Article  CAS  Google Scholar 

  • Peters AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism from brown algal genetics and genomics. J Phycol 40:1079–1088

    Article  Google Scholar 

  • Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta–an appraisal. Phycologia 24:35–47

    Article  Google Scholar 

  • Richter DFE, Kirst GO (1987) d-Mannitol dehydrogenase and d-mannitol-1-phosphate dehydrogenase in Platymonas subcordformis: some characteristics and their role in osmotic adaptation. Planta 170:528–534

    Article  CAS  Google Scholar 

  • Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C, Boyen C (2005) Identification of stress genes from Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41:1227–1235

    Article  CAS  Google Scholar 

  • Schmatz D (1997) The mannitol cycle in Eimeria. Parasitology 114:S81–S89

    PubMed  Google Scholar 

  • Schneider KH, Giffhorn F, Kaplan S (1993) Cloning, nucleotide-sequence, and characterization of the mannitol dehydrogenase gene from Rhodobacter-sphaeroides. J Gen Microbiol 139:2475–2484

    CAS  PubMed  Google Scholar 

  • Solomon PS, Waters ODC, Oliver RP (2007) Decoding the mannitol enigma in filamentous fungi. Trends Microbiol 15:257–262

    Article  CAS  PubMed  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking culture. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  • Thomas DN, Kirst GO (1991a) Differences in osmoacclimatation between sporophytes and gametophytes of the brown alga Ectocarpus siliculosus. Physiol Plant 83:218–289

    Article  Google Scholar 

  • Thomas DN, Kirst GO (1991b) Salt tolerance of Ectocarpus siliculosus (Dillw.) lyngb.: comparison of gametophytes, sporophytes and isolates of different geographic origin. Bot Acta 104:26–36

    Google Scholar 

  • Velez H, Glassbrook NJ, Daub ME (2007) Mannitol metabolism in the phytopathogenic fungus Alternaria alternuata. Fungal Genet Biol 44:258–268

    Article  CAS  PubMed  Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  • Wong TKM, Ho CL, Lee WW, Rahim RA, Phang SM (2007) Analyses of expressed sequence tags from Sargassum binderi (Phaeophyta). J Phycol 43:528–534

    Article  CAS  Google Scholar 

  • Wordern AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts A, Allen AE, Cuvelier ML, Derelle E, Everett MV et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–274

    Article  Google Scholar 

  • Wright PJ, Chudeck JA, Foster R, Reed RH (1989) Turnover of the intracellular mannitol pool of Fucus spiralis L. (Fucales, Phaeophyta) during osmotic shock. J Exp Bot 40:1347–1353

    Article  CAS  Google Scholar 

  • Yamaguchi T, Ikawa T, Nisizawa K (1966) Incorporation of radioactive carbon from H14CO3 into sugar constituents by a brown alga, Eisenia bicyclis, during photosynthesis and its fate in the dark. Plant Cell Physiol 7:217–229

    CAS  Google Scholar 

  • Yamaguchi T, Ikawa T, Nisizawa K (1969) Pathway of mannitol formation during photosynthesis in brown algae. Plant Cell Physiol 10:425–440

    CAS  Google Scholar 

  • Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornate (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20:1033–1043

    Article  Google Scholar 

Download references

Acknowledgments

SD received funding from the European community’s Sixth Framework Program (contract n° MESTCT 2005-020737). Part of this work was performed within the framework of the ‘Marine Genomics Europe’ NoE (Network of Excellence) (European Commission contract No. GOCE-CT-2004-505403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Tonon.

Additional information

S. Rousvoal and A. Groisillier contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rousvoal, S., Groisillier, A., Dittami, S.M. et al. Mannitol-1-phosphate dehydrogenase activity in Ectocarpus siliculosus, a key role for mannitol synthesis in brown algae. Planta 233, 261–273 (2011). https://doi.org/10.1007/s00425-010-1295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1295-6

Keywords

Navigation