Skip to main content
Log in

The jasmonate signaling pathway in tomato regulates susceptibility to a toxin-dependent necrotrophic pathogen

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The plant hormone, jasmonic acid (JA), is known to have a critical role in both resistance and susceptibility against bacterial and fungal pathogen attack. However, little is known about the involvement of JA in the interactions between plants and toxigenic necrotrophic fungal pathogens. Using the tomato pathotype of Alternaria alternata (Aa) and its AAL-toxin/tomato interaction as a model system, we demonstrate a possible role for JA in susceptibility of plants against pathogens, which utilize host-specific toxins as virulence effectors. Disease development and in planta growth of the tomato pathotype of Aa were decreased in the def1 mutant, defective in biosynthesis of JA, compared with the wild-type (WT) cultivar. Exogenous methyl jasmonate (MeJA) application restored pathogen disease symptoms to the def1 mutant and led to increased disease in the WT. On the other hand, necrotic cell death was similarly induced by AAL-toxin both on def1 and WT, and MeJA application to the tomatoes did not affect the degree of cell death by the toxin. These results indicate that the JA-dependent signaling pathway is not involved in host basal defense responses against the tomato pathotype of Aa, but rather might affect pathogen acceptability via a toxin-independent manner. Data further suggest that JA has a promotional effect on susceptibility of tomato to toxigenic and necrotrophic pathogens, such that pathogens might utilize the JA signaling pathway for successful infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ET:

Ethylene

HSTs:

Host-specific toxins

JA:

Jasmonic acid

MeJA:

Methyl jasmonate

SA:

Salicylic acid

References

  • Akamatsu H, Itoh Y, Kodama M, Otani H, Kohmoto K (1997) AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology 87:967–972

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu H, Otani H, Kodama M (2003) Characterization of a gene cluster for host-specific AAL-toxin biosynthesis in the tomato pathotype of Alternaria alternata. Abstracts of the 22nd fungal genetics conference, Asilomar, pp 121

  • Arie T, Kaneko I, Yoshida T, Noguchi M, Nomura Y, Yamaguchi I (2000) Mating-type genes from asexual phytopathogenic Ascomycetes Fusarium oxysporum and Alternaria alternata. Mol Plant Microbe Interact 13:1330–1339

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Stone JM, Heard JE, Kovtun Y, Yorgey P, Sheen J, Ausubel FM (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, salicylate-dependent signaling pathways. Plant Cell 12:1823–1835

    Article  PubMed  CAS  Google Scholar 

  • Berger S, Bell E, Mullet JE (1996) Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol 111:525–531

    PubMed  CAS  Google Scholar 

  • Bottini AT, Gilchrist DG (1981) Phytotoxins. I. A 1-aminodimethylheptadecapentol from Alternaria alternata f. sp. lycopersici. Tetrahedron Lett 22:2719–2722

    Article  CAS  Google Scholar 

  • Bottini AT, Bowen JR, Gilchrist DG (1981) Phytotoxins. II. Characterization of a phytotoxic fraction from Alternaria alternata f. sp. lycopersici. Tetrahedron Lett 22:2723–2726

    Article  CAS  Google Scholar 

  • Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97:4961–4966

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology 83:1054–1062

    Article  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist DG, Grogan RG (1976) Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici. Phytopathology 66:165–171

    Article  Google Scholar 

  • Gilchrist DG, Wang H, Bostock RM (1995) Sphingosine-related mycotoxins in plant and animal disease. Can J Bot 73:S459–S467

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Ryan CA (1999) Suppressors of systemin signaling identify genes in the tomato wound responses pathway. Genetics 153:1411–1421

    PubMed  CAS  Google Scholar 

  • Howe GA, Lightner J, Browse J, Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077

    Article  PubMed  CAS  Google Scholar 

  • Johnson RD, Johnson L, Itoh Y, Kodama M, Otani H, Kohmoto K (2000) Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity. Mol Plant Microbe Interact 13:742–753

    Article  PubMed  CAS  Google Scholar 

  • Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26:509–522

    Article  PubMed  CAS  Google Scholar 

  • Kodama M, Otani H, Kohmoto K (1995) A rapid and sensitive procedure for the quantitative detection of AL-toxin by fluorescence derivatization and separation by high performance liquid chromatography. Ann Phytopathol Soc Jpn 61:477–480

    CAS  Google Scholar 

  • Kohmoto K, Otani H (1991) Host recognition by toxigenic plant pathogens. Experientia 47:755–764

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1994) The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530

    Article  PubMed  CAS  Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN (2006) The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact 19:789–800

    Article  PubMed  CAS  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling H-Q, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  PubMed  CAS  Google Scholar 

  • Lightner J, Pearce G, Ryan CA, Browse J (1993) Isolation of signaling mutants of tomato (Lycopersicon esculentum). Mol Gen Genet 241:595–601

    Article  PubMed  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Martineau B, Bostock RM, Lincoln JE, Gilchrist DG (1999) Molecular and genetic characterization of ethylene involvement in mycotoxin-induced plant cell death. Physiol Mol Plant Pathol 54:73–85

    Article  CAS  Google Scholar 

  • Moussatos VV, Yang SF, Ward B, Gilchrist DG (1994) AAL-toxin induced physiological changes in Lycopersicon esculentum Mill: role for ethylene and pyrimidine intermediates in necrosis. Physiol Mol Plant Pathol 44:455–468

    Article  CAS  Google Scholar 

  • Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116

    Article  CAS  Google Scholar 

  • Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110:387–392

    PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Jones JB, Antoine FR, Ciardi J, Klee HJ (2001) Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. Plant J 25:315–323

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Schmelz E, Block A, Miersch O, Wasternack C, Jones JB, Klee HJ (2003) Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol 133:1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Otani H, Kohmoto K, Kodama M, Nishimura S (1991) Role of host-specific toxins in the pathogensis of Alternaria alternata. In: Patil SS, Ouchi S, Mills D, Vance C (eds) Molecular strategies of pathogens and host palnts. Springer, New York, pp 139–149

    Google Scholar 

  • Otani H, Kohmoto K, Kodama M (1995) Alternaria toxins and their effects on host plants. Can J Bot 73:S453–S458

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  PubMed  CAS  Google Scholar 

  • Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32:561–572

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungas Pythium irregulare. Plant J 15:747–754

    Article  PubMed  CAS  Google Scholar 

  • Thaler J, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Broekaert WF, Cammue BPA (2000) Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem 38:421–427

    Article  CAS  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas sytingae pv. tomato DC3000. Mol Plant Microbe Interact 20:955–965

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Jones C, Ciacci-Zanella J, Holt T, Gilchrist DG, Dickman MB (1996) Fumonisins and Alternaria alternata lycopersici toxins: sphinganine analog mycotoxins induce apoptosis in monkey kidney cells. Proc Natl Acad Sci USA 93:3461–3465

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: An update on biosynthesis, signal transduction and action in plant stress responses, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi D, Akamatsu H, Otani H, Kodama M (2006) Pathological evaluation of host-specific AAL-toxins and fumonisin mycotoxins produced by Alternaria and Fusarium species. J Gen Plant Pathol 72:323–327

    Article  CAS  Google Scholar 

  • Yoder OC, Scheffer RP (1969) Role of toxin in early interactions of Helminthosporium victoriae with susceptible and resistant oat tissue. Phytopathology 59:1954–1959

    Google Scholar 

  • Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to R. D. Johnson for valuable suggestions. We gratefully acknowledge G. A. Howe for providing the seeds of def1 line and D. G. Gilchrist for providing the fungal strain. This work was supported by a Grant-in-Aid for Scientific Research from the Japanese Society for Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichiro Kodama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egusa, M., Ozawa, R., Takabayashi, J. et al. The jasmonate signaling pathway in tomato regulates susceptibility to a toxin-dependent necrotrophic pathogen. Planta 229, 965–976 (2009). https://doi.org/10.1007/s00425-009-0890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0890-x

Keywords

Navigation