Skip to main content
Log in

Symptomless Endophytic Fungi Suppress Endogenous Levels of Salicylic Acid and Interact With the Jasmonate-Dependent Indirect Defense Traits of Their Host, Lima Bean (Phaseolus lunatus)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Symptomless ‘type II’ fungal endophytes colonize their plant host horizontally and exert diverse effects on its resistance phenotype. Here, we used wild Lima bean (Phaseolus lunatus) plants that were experimentally colonized with one of three strains of natural endophytes (Bartalinia pondoensis, Fusarium sp., or Cochliobolus lunatus) to investigate the effects of fungal colonization on the endogenous levels of salicylic acid (SA) and jasmonic acid (JA) and on two JA-dependent indirect defense traits. Colonization with Fusarium sp. enhanced JA levels in intact leaves, whereas B. pondoensis suppressed the induction of endogenous JA in mechanically damaged leaves. Endogenous SA levels in intact leaves were significantly decreased by all strains and B. pondoensis and Fusarium sp. decreased SA levels after mechanical damage. Colonization with Fusarium sp. or C. lunatus enhanced the number of detectable volatile organic compounds (VOCs) emitted from intact leaves, and all three strains enhanced the relative amount of several VOCs emitted from intact leaves as well as the number of detectable VOCs emitted from slightly damaged leaves. All three strains completely suppressed the induced secretion of extrafloral nectar (EFN) after the exogenous application of JA. Symptomless endophytes interact in complex and strain-specific ways with the endogenous levels of SA and JA and with the defense traits that are controlled by these hormones. These interactions can occur both upstream and downstream of the defense hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahlholm J, Helander M, Elamo P, Saloniemi I, Neuvonen S, Hanhimaki S, Saikkonen K (2002) Micro-fungi and invertebrate herbivores on birch trees: fungal mediated plant-herbivore interactions or responses to host quality? Ecol Lett 5:648–655

    Article  Google Scholar 

  • Albrectsen BR, Bjorken L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves-diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Ángeles-López YI, Martínez-Gallardo NA, Ramírez-Romero R, López MG, Sánchez-Hernández C, Délano-Frier JP (2013) Cross-kingdom effects of plant-plant signaling via volatile organic compounds emitted by tomato (Solanum lycopersicum) plants infested by the greenhouse whitefly (Trialeurodes vaporariorum). J Chem Ecol 38:1376–1386

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens - are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135

    Article  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Faeth SH (2002) Are endophytic fungi defensive plant mutualists? Oikos 98:25–36

    Article  Google Scholar 

  • Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • Gange AC, Eschen R, Wearn JA, Thawer A, Sutton BC (2012) Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant. Oecologia 168:1023–1031

    Article  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity of basidiomycetes:application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 323–342

  • Heil M (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Article  Google Scholar 

  • Heil M (2014) Relevance versus reproducibility-solving a common dilemma in chemical ecology. J Chem Ecol 40:315–316

    Article  CAS  PubMed  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A 104:5467–5472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714

    Article  Google Scholar 

  • Jaber LR, Vidal S (2010) Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecol Entomol 35:25–36

    Article  Google Scholar 

  • Jallow MA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthopod Plant Interact 2:53–62

    Article  Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extrafloral nectar reduces herbivory in Lima beans (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Article  Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J Ecol 94:619–628

    Article  CAS  Google Scholar 

  • Kost C, Heil M (2008) The defensive role of volatile emission and extrafloral nectar secretion for Lima bean in nature. J Chem Ecol 34:2–13

    Article  CAS  PubMed Central  Google Scholar 

  • Kusumoto D, Matsumura E (2012) Effects of salicylic acid, 1-aminocyclopropan-1-carboxylic acid and methyl jasmonate on the frequencies of endophytic fungi in Quercus serrata leaves. For Pathol 42:393–396

    Article  Google Scholar 

  • Li T, Blande JD, Gundel PE, Helander M, Saikkonen K (2014) Epichloë endophytes alter inducible indirect defences in host grasses. PLOS ONE 9:e101331

  • Malamy J, Henning J, Klessig DF (1992) Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4:359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mejía LC, Rojas EI, Maynard Z, Van Bael SA, Arnold AE, Hebbar P, Samuels GJ, Robbins N, Herre EA (2008) Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46:4–14

    Article  Google Scholar 

  • Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microb Ecol 54:685–696

    Article  CAS  PubMed  Google Scholar 

  • Mueller MJ, Brodschelm W (1994) Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal Biochem 218:425–435

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol 55:113–128

    Article  Google Scholar 

  • Pańka D, Piesik D, Jeske M, Baturo-Cieśniewska A (2013) Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. J Plant Physiol 170:1010–1019

    Article  PubMed  Google Scholar 

  • Partida-Martinez LPP, Heil M (2011) The microbe-free plant: fact or artefact? Front Plant Sci 2:100

  • Pluskota WE, Qu N, Maitrejean M, Boland W, Baldwin IT (2007) Jasmonates and its mimics differentially elicit systemic defence responses in Nicotiana attenuata. J Exp Bot 58:4071–4082

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2005) Jasmonates - signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    Google Scholar 

  • Ramírez-Chávez E, López-Bucio J, Herrera-Estrella L, Molina-Torres J (2004) Alkamides isolated from plants promote growth and alter root development in Arabidopsis. Plant Physiol 134:1058–1068

    Article  PubMed Central  PubMed  Google Scholar 

  • Ren C-G, Dai C-C (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol 12:128

  • Saikkonen K, Wali P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Gundel PE, Helander M (2013) Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol 39:962–968

    Article  CAS  PubMed  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  PubMed  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS One 7:e40863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Bael SA, Estrada C, Rehner SA, Santos JF, Wcislo WT (2012) Leaf endophyte load influences fungal garden development in leaf-cutting ants. BMC Ecol 12:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Bael SA, Valencia MC, Rojas EI, Gomez N, Windsor DM, Herre EA (2009) Effects of foliar endophytic fungi on the preference and performance of the leaf beetle Chelymorpha alternans in Panama. Biotropica 41:221–225

    Article  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Yue Q, Wang CL, Gianfagna TJ, Meyer WA (2001) Volatile compounds of endophyte-free and infected tall fescue (Festuca arundinacea Schreb.). Phytochemistry 58:935–941

Download references

Acknowledgments

We thank Priscila Chaverri and James Blande for sharing unpublished data, Catalina Estrada and an anonymous referee for comments on an earlier version of this manuscript, Wilhelm Boland for providing us with DMNT and TMTT and Jorge Molina for standard compounds and help with the chromatography. CONACyT of México is gratefully acknowledged for financial support to AN-M (300752) and to MH (project grants: 109621 and 130656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Heil.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarro-Meléndez, A.L., Heil, M. Symptomless Endophytic Fungi Suppress Endogenous Levels of Salicylic Acid and Interact With the Jasmonate-Dependent Indirect Defense Traits of Their Host, Lima Bean (Phaseolus lunatus). J Chem Ecol 40, 816–825 (2014). https://doi.org/10.1007/s10886-014-0477-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0477-2

Keywords

Navigation