Skip to main content
Log in

Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cyclic GMP (cGMP) is an important signaling molecule that controls a range of cellular functions. So far, however, only a few genes have been found to be regulated by cGMP in higher plants. We investigated the cGMP-responsiveness of several genes encoding flavonoid-biosynthetic enzymes in soybean (Glycine max L.) involved in legume-specific isoflavone, phytoalexin and anthocyanin biosynthesis, such as phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate:CoA ligase, chalcone synthase, chalcone reductase, chalcone isomerase, 2-hydroxyisoflavanone synthase, 2-hydroxyisoflavanone dehydratase, anthocyanidin synthase, UDP-glucose:isoflavone 7-O-glucosyltransferase, and isoflavone reductase, and found that the majority of these genes were induced by cGMP but not by cAMP. All cGMP-induced genes were also stimulated by sodium nitroprusside (SNP), a nitric oxide (NO) donor, and illumination of cultured cells with white light. The NO-dependent induction of these genes was blocked by 6-anilino-5,8-quinolinedione, an inhibitor of guanylyl cyclase. Moreover, cGMP levels in cultured cells were transiently increased by SNP. Consistent with the increases of these transcripts, the accumulation of anthocyanin in response to cGMP, NO, and white light was observed. The treatment of soybean cotyledons with SNP resulted in a high accumulation of isoflavones such as daidzein and genistein. Loss- and gain-of-function experiments with the promoter of chalcone reductase gene indicated the Unit I-independent activation of gene expression by cGMP. Together, these results suggest that cGMP acts as a second messenger to activate the expression of genes for enzymes involved in the flavonoid biosynthetic pathway in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

GC:

Guanylyl cyclase

SNP:

Sodium nitroprusside

CHS:

Chalcone synthase

PAL:

Phenylalanine ammonia-lyase

PR:

Pathogenesis-related

LY83583:

6-Anilino-5, 8-quinolinedione

4CL:

4-Coumarate:CoA ligase

IFGT:

UDP-glucose:isoflavone 7-O-glucosyltransferase

CHR:

Chalcone reductase

IFR:

Isoflavone reductase

HIDH:

2-Hydroxyisoflavanone dehydratase

C4H:

Cinnamate 4-hydroxylase

CHI:

Chalcone isomerase

IFS:

2-Hydroxyisoflavanone synthase

ANS:

Anthocyanidin synthase

GUS:

β-Glucuronidase

LUC:

Luciferase

DEANO:

Diethylamine NONOate

References

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    Article  PubMed  CAS  Google Scholar 

  • Bariola PA, MacIntosh GC, Green PJ (1999) Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation. Plant Physiol 119:331–342

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994a) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77:73–81

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G, Chua NH (1994b) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8:2188–2202

    Article  PubMed  CAS  Google Scholar 

  • Cousson A (2003) Pharmacological evidence for a positive influence of the cyclic GMP-independent transduction on the cyclic GMP-mediated Ca2+-dependent pathway within the Arabidopsis stomatal opening in response to auxin. Plant Sci 164:759–767

    Article  CAS  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  CAS  Google Scholar 

  • Hanafy KA, Krumenacker JS, Murad F (2001) NO, nitrotyrosine, and cyclic GMP in signal transduction. Med Sci Monit 7:801–819

    PubMed  CAS  Google Scholar 

  • Horn ME, Sherrard JH, Widhorm JM (1983) Photoautotrophic growth of soybean cells in suspension culture. Plant Physiol 72:426–429

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Neill SJ, Tnag Z, Cai W (2005) Nitric oxide mediates gravitropic bending in soybean roots. Plant Physiol 137:663–670

    Article  PubMed  CAS  Google Scholar 

  • Kerckhoffs LHJ, Kendrick RE (1997) Photocontrol of anthocyanin biosynthesis in tomato. J Plant Res 110:141–149

    Article  CAS  Google Scholar 

  • Kuhn DN, Chappell J, Boudet A, Hahlbrock K (1984) Induction of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc Natl Acad Sci USA 81:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS ONE 2:e449

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Durner J (2007) S-Nitrosylation in plants- spectrum and selectivity. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Springer, Berlin, pp 53–71

    Chapter  Google Scholar 

  • Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    Article  PubMed  CAS  Google Scholar 

  • Maathuis FJ (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 5:700–711

    Article  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Modolo LV, Cunha FQ, Braga MR, Salgado I (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol 130:1288–1297

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16:2554–2564

    Article  PubMed  CAS  Google Scholar 

  • Newton RP, Chiatante D, Ghosh D, Brenton AG, Walton TJ, Harris FM, Brown EG (1989) Identification of cyclic nucleotide constituents of meristematic and non-meristematic tissues of Pisum sativum roots. Phytochemistry 28:2243–2254

    Article  CAS  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    Article  PubMed  CAS  Google Scholar 

  • Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem 282:23581–23590

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 8:2325–2333

    Article  PubMed  CAS  Google Scholar 

  • Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Prado AM, Porterfield DM, Feijó JA (2004) Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development 131:2707–2714

    Article  PubMed  CAS  Google Scholar 

  • Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. EMBO J 23:4443–4450

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (eds) (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, NY

    Google Scholar 

  • Schijlen EGWM, Ric de Vos CH, van Tunen AJ, Bovy AG (2004) Modification of flavonoid biosynthesis in crop plants. Phytochemistry 65:2631–2648

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    Article  PubMed  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2004) The involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil. J Plant Physiol 161:277–284

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Uhlmann A, Ebel J (1993) Molecular cloning and expression of 4-coumarate:coenzyme A ligase, an enzyme involved in the resistance response of soybean (Glycine max L.) against pathogen attack. Plant Physiol 102:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Ulker B, Somssich E (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Welle R, Schröder G, Schiltz E, Grisebach H, Schröder J (1991) Induced plant responses to pathogen attack. Analysis and heterologous expresson of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. Cv. Harosoy 63). Eur J Biochem 196:423–430

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Courtois C, Besson A, Gravot A, Buchwalter A, Pugin A, Lamotte O (2007) NO-based signaling in plants. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Springer, Berlin, pp 35–51

    Chapter  Google Scholar 

  • Wu Y, Hiratsuka K, Neuhaus G, Chua NH (1996) Calcium and cGMP target distinct phytochrome-responsive elements. Plant J 10:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Masuzawa T, Nagaoka Y, Ohnishi T, Iwasaki T (1994) Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor. J Biol Chem 269:32725–32731

    PubMed  CAS  Google Scholar 

  • Yamagata H, Saka K, Tanaka T, Aizono Y (2001) Light activates a 46-kDa MAP kinase-like protein kinasa in soybean cell culture. FEBS Lett 494:24–29

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Yonesu K, Hirata A, Aizono Y (2002) TGTCACA is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem 277:11582–11590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J.M. Widholm for the gift of soybean SB-P culture, Drs. M. Sasaki and K. Kanazawa for their help with HPLC, Prof. N.-H. Chua, in whose laboratory this work was started, and Dr. C. Bowler for critical reading of the manuscript. This research was supported by Grants-in Aid for Scientific Research (No. 16380071) from the Ministry of Education, Culture, Science, Sports, and Technology of Japan, and grants from Fuji Foundation for Protein Research to H.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamagata.

Additional information

The nucleotide sequence for the promoter of the soybean chalcone reductase gene has been deposited in the GenBank database under GenBank accession number EU157917.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suita, K., Kiryu, T., Sawada, M. et al. Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. Planta 229, 403–413 (2009). https://doi.org/10.1007/s00425-008-0839-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0839-5

Keywords

Navigation