Skip to main content

Advertisement

Log in

Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The phloem translocation stream of the angiosperms contains a special population of proteins and RNA molecules which appear to be produced in the companion cells prior to being transported into the sieve tube system through the interconnecting plasmodesmata. During this process, these non-cell-autonomous proteins are thought to undergo partial unfolding. Recent mass spectroscopy studies identified peptidyl-prolyl cistrans isomerase (PPIases) as potential molecular chaperones functioning in the phloem translocation stream (Giavalisco et al. 2006). In the present study, we describe the cloning and characterisation of a castor bean phloem cyclophilin, RcCYP1 that has high peptidyl-prolyl cistrans isomerase activity. Equivalent enzymatic activity was detected with phloem sap or purified recombinant (His)6-tagged RcCYP1. Mass spectrometry analysis of proteolytic peptides, derived from a 22 kDa band in HPLC-fractionated phloem sap, immunolocalisation studies and Western analysis of proteins extracted from castor bean tissues/organs indicated that RcCYP1 is an abundant protein in the companion cell-sieve element complex. Microinjection experiments established that purified recombinant (His)6-RcCYP1 can interact with plasmodesmata to both induce an increase in size exclusion limit and mediate its own cell-to-cell trafficking. Collectively, these findings support the hypothesis that RcCYP1 plays a role in the refolding of non-cell-autonomous proteins after their entry into the phloem translocation stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Anti-STEP:

Polyclonal antibody preparation directed against castor bean sieve tube exudate proteins

CsA:

Cyclosporin A

FITC:

Fluorescein isothiocyanate

PPIase:

Peptidyl-prolyl cistrans isomerase

HPLC:

High-pressure liquid chromatography

OG:

Oregon Green

References

  • Aoki K, Kragler F, Xoconostle-Cázares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    Article  PubMed  CAS  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94:14150–14155

    Article  PubMed  CAS  Google Scholar 

  • Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Chou IT, Gasser CS (1997) Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin proteins. Plant Mol Biol 35:873–892

    Article  PubMed  CAS  Google Scholar 

  • Dartigalongue C, Raina S (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J 17:3968–3980

    Article  PubMed  CAS  Google Scholar 

  • Dolgener E (1996) Klonierung der cDNA mutmaßlicher Siebröhrenproteine aus Ricinus communis L. Universität Bayreuth, Diplomarbeit

    Google Scholar 

  • Dolinski K, Muir S, Cardenas M, Heitman J (1997) All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5. Bornträger, Berlin

    Google Scholar 

  • Esau K, Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: Ultrastructural aspects and developmental relations. Am J Bot 72:1641–1653

    Article  Google Scholar 

  • Fischer G, Bang H, Mech C (1984) Detection of enzyme catalysis for cistrans isomerization of peptide bonds using proline-containing peptides as substrates. Biomed Biochim Acta 43:1101–1112

    PubMed  CAS  Google Scholar 

  • Fischer G, Wittmann LB, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cistrans isomerase are probably identical proteins. Nature 337:476–478

    Article  PubMed  CAS  Google Scholar 

  • Fisher DB, Wu Y, Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: an analysis of the cyclophilin family of proteins. Arch Biochem Biophys 371:149–162

    Article  PubMed  CAS  Google Scholar 

  • Gasser CS, Gunning DA, Budelier KA, Brown SM (1990) Structure and expression of cyctosolic cyclophilin peptidyl-prolyl cistrans isomerase of higher-plants and production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci USA 87:9519–9523

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Langenberger S, Wilke I, Heineke D, Heldt HW, Stitt M (1993) Sucrose is metabolised by sucrose synthase and glycolysis within the phloem complex of Ricinus communis L. seedlings. Planta 190:446–453

    Article  CAS  Google Scholar 

  • Gething M-J, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  PubMed  CAS  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    Article  PubMed  CAS  Google Scholar 

  • Grimmer C, Komor E (1999) Assimilate export by leaves of Ricinus communis L. growing under normal and elevated carbon dioxide concentrations: the same rate at day, a different rate at night. Planta 209:275–281

    Article  PubMed  CAS  Google Scholar 

  • Gruber A, Zingales B (1995) Alternative method to remove antibacterial antibodies from antisera used for screening of expression libraries. Biotechniques 19:28

    PubMed  CAS  Google Scholar 

  • Hager DA, Burgess RR (1980) Elution of proteins from sodium dodecyl sulfate-poly acrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem 109:76–86

    Article  PubMed  CAS  Google Scholar 

  • Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin a specific cytosolic binding protein for cyclosporin A. Science 226:544–547

    Article  PubMed  CAS  Google Scholar 

  • Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cistrans peptidyl-prolyl isomerase. Nature 341:758–760

    Article  PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14:S303–S325

    PubMed  CAS  Google Scholar 

  • He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267

    Article  PubMed  CAS  Google Scholar 

  • Hottenrot S, Schumann T, Plückthun A, Fischer G, Rahfeld J-U (1997) The Escherichia coli SlyD is a metal ion-regulated peptidyl-prolyl cis/trans-isomerase. J Biol Chem 272:15697–15701

    Article  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    Article  PubMed  CAS  Google Scholar 

  • Kallarackal J, Orlich G, Schobert C, Komor E (1989) Sucrose transport into the phloem of Ricinus seedlings measured by sieve tube sap analysis. Planta 177:327–335

    Article  CAS  Google Scholar 

  • Kragler F, Monzer J, Shash K, Xoconostle-Cázares B, Lucas WJ (1998) Cell-to-cell transport of proteins: Requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15:367–381

    Article  CAS  Google Scholar 

  • Lippuner V, Chou IT, Scott SV, Ettinger WF, Theg SM, Gasser CS (1994) Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana. J Biol Chem 269:7863–7868

    PubMed  CAS  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  PubMed  CAS  Google Scholar 

  • Nakamura SI, Hayashi H, Mori S, Chino M (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol 34:927–933

    CAS  Google Scholar 

  • Oh KC, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signalling. Planta 224:133–144

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy MV (1974) Ultrastructure of phloem in palms III. Mature phloem. Protoplasma 79:265–315

    Article  Google Scholar 

  • Pflügl G, Kallen J, Schirmer T, Jansonius JN, Zurini MGM, Walkinshaw MD (1993) X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 361:91–94

    Article  PubMed  Google Scholar 

  • Rahfeld JU, Ruecknagel KP, Schelbert B, Ludwig B, Hacker J, Mann K, Fischer G (1994) Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases: amino acid sequence and recombinant production of parvulin. FEBS Lett 352:180–184

    Article  PubMed  CAS  Google Scholar 

  • Rassow J, Mohrs K, Koidl S, Barthelmess IB, Pfanner N, Tropschug M (1995) Cyclophilin 20 is involved in mitochondrial protein folding in cooperation with molecular chaperones Hsp70 and Hsp60. Mol Cell Biol 15:2654–2662

    PubMed  CAS  Google Scholar 

  • Read SM, Northcote DH (1983) Chemical and immunological similarities between the phloem proteins of three genera of Cucurbitaceae. Planta 158:119–127

    Article  CAS  Google Scholar 

  • Rojas MR, Zerbini FM, Allison RF, Gilbertson RL, Lucas WJ (1997) Capsid protein and helper component proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283–295

    Article  PubMed  CAS  Google Scholar 

  • Romano P, Horton P, Gray JE (2004) The Arabidopsis cyclophilin gene family. Plant Physiol 134:1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Romano P, Gray J, Horton P, Luan S (2005) Plant immunophilins: functional versatility beyond protein maturation. New Phytol 166:753–769

    Article  PubMed  CAS  Google Scholar 

  • Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E, Orlich G (1993) Specific proteins in the sieve tube exudate of Ricinus communis L. seedlings: separation, characterization and in vivo labelling. Planta 191:207–213

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, vols 1, 2 and 3, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schmid FX (1995) Prolyl isomerases join the fold. Curr Biol 5:993–994

    Article  PubMed  CAS  Google Scholar 

  • Schobert C, Großmann P, Gottschalk M, Komor E, Pecsvaradi A, Neumann D (1995) Sieve tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta 196:205–210

    Article  CAS  Google Scholar 

  • Schobert C, Baker L, Szederkènyi J, Großmann P, Komor E, Hayashi H, Chino M, Lucas WJ (1998) Identification of immunologically related proteins in sieve-tube exudate collected from monocotyledonous and dicotyledonous plants. Planta 206:245–252

    Article  CAS  Google Scholar 

  • Scholz C, Schindler T, Dolinski K, Heitman J, Schmid FX (1997) Cyclophilin active site mutants have native prolyl isomerase activity with a protein substrate. FEBS Lett 414:69–73

    Article  PubMed  CAS  Google Scholar 

  • Scholze C, Peterson A, Diettrich B, Luckner M (1999) Cyclophilin isoforms from Digitalis lanata. Sequences and expression during embryogenesis and stress. J Plant Physiol 155:212–219

    CAS  Google Scholar 

  • Sheldon PS, Venis MA (1996) Purification and characterization of cytosolic and microsomal cyclophilins from maize (Zea mays). Biochem J 315:965–997

    PubMed  CAS  Google Scholar 

  • Sjolund RD (1997) The phloem sieve element: a river runs through it. Plant Cell 9:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Stamnes MA, Rutherford SL, Zuker CS (1992) Cyclophilins: a new family of proteins involved in intracellular folding. Trends Cell Biol 2:272–276

    Article  PubMed  CAS  Google Scholar 

  • Szederkényi J, Komor E, Schobert C (1997) Cloning of the cDNA for glutaredoxin, an abundant sieve tube exudate protein from Ricinus communis L. and characterization of the glutathione-dependent thiol-reduction system in sieve tubes. Planta 202:349–356

    Article  PubMed  Google Scholar 

  • Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cistrans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337:473–475

    Article  PubMed  CAS  Google Scholar 

  • van Bel AJE, Knoblauch M (2000) Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol 27:477–487

    Google Scholar 

  • van de Loo FJ, Turner S, Somerville C (1995) Expressed sequence tags from developing castor seeds. Plant Physiol 108:1141–1150

    Google Scholar 

  • Wang HL, Wang Y, Giesman-Cookmeyer D, Lommel SA, Lucas WJ (1998) Mutations in viral movement protein alter systemic infection and identify an intercellular barrier to entry into the phloem long-distance transport system. Virology 245:75–89

    Article  PubMed  CAS  Google Scholar 

  • Wülfing C, Lombardero J, Plueckthun A (1994) An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif. J Biol Chem 269:2895–2901

    PubMed  Google Scholar 

  • Xoconostle-Cázares B, Yu X, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the following people for technical support and analysis: C. Horstmann, Gatersleben, Germany, for separation and sequencing of the cleavage peptides; C. Scholz, Bayreuth, Germany, for the separation of (His)6-tagged RcCYP1 from endogenous bacterial cyclophilin; F. X. Schmid, Bayreuth, for providing the facilities and substrates for kinetic analyses. The Arabidopsis cyclophilin (AtCYP18-3, formerly called ROC1) antibody was generously provided by C. S. Gasser, University of California, Davis. C. Schobert was supported in part by a DAAD fellowship. Support was also provided by a grant from the Deutsche Forschungsgemeinschaft to M.G. and C·S., and by a grant from the U.S. Department of Energy, Division of Energy Biosciences (DE-FG03-94ER20134) to W.J.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Komor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottschalk, M., Dolgener, E., Xoconostle-Cázares, B. et al. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding. Planta 228, 687–700 (2008). https://doi.org/10.1007/s00425-008-0771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0771-8

Keywords

Navigation