Skip to main content
Log in

Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Higher plants contain two structurally unrelated flavoprotein blue-light photoreceptors, the cryptochromes and the phototropins, which mediate largely distinct response pathways. Cryptochromes regulate plant development and photomorphogenesis whereas phototropins are primarily implicated in photomovement responses such as phototropism and chloroplast relocation. In the present study we identify interactions between cryptochromes and phototropins in several photoresponses of Arabidopsis thaliana. Cryptochromes are shown to exert a positive effect on phototropic curvature under long-term irradiation conditions. Specifically, in a phot1-deficient genetic background (phot1 mutant), curvature is reduced in the absence of cryptochromes, particularly at wavelengths where cryptochromes show preferential absorption. Phototropins in turn exert a small promotive effect on such cryptochrome-mediated responses as hypocotyl elongation and anthocyanin accumulation. These effects are apparent in a cryptochrome-deficient (cry1cry2 mutant) genetic background. In addition to positive interactions between signalling pathways, we demonstrate that the cryptochromes also exert a negative regulatory effect. Levels of phot1 protein decrease in blue light as a function of cryptochrome photoreceptor activation. This negative regulation occurs in part at the level of phot1 transcription but may also involve post-transcriptional mechanisms. These two classes of photoreceptor thereby reciprocally modulate their overall responsivity to blue light through multiple forms of interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRY1:

Cryptochrome-1

phot1:

Phototropin1

phot2:

Phototropin2

MS:

Murashige and Skoog

FAD:

Flavin adenine dinucleotide

FMN:

Flavin mononucleotide

References

  • Ahmad M, Jarillo JA, Cashmore AR (1998a) Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10:197–208

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998b) Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392:720–723

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129:774–785

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220:498–502

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282(20):14916–14922

    Article  PubMed  CAS  Google Scholar 

  • Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Article  PubMed  CAS  Google Scholar 

  • Briggs WR (2006) Blue light receptors in plants. In: Schaefer E, Nagy F (eds) Photomorphogenesis in plants and bacteria. 3rd edn. Springer, Dordrecht, pp 171–197

    Google Scholar 

  • Briggs WR, Christie JM, Salomon M (2001) Phototropins: a new family of flavin-binding blue light receptors in plants. Antioxid Redox Signal 3(5):775–788

    Article  PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96:8779–8783

    Article  PubMed  CAS  Google Scholar 

  • Folta K, Spalding E (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26:471–478

    Article  PubMed  CAS  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Biol 10:489–490

    Article  PubMed  CAS  Google Scholar 

  • Janoudi AK, Poff K (1990) A common fluence threshold for first positive and second positive phototropism in Arabidopsis thaliana. Plant Physiol 94:1605–1608

    Article  PubMed  CAS  Google Scholar 

  • Kanegae H, Tahir M, Savazzini F, Yamamoto K, Yano M, Saski T, Kanegae T, Wada M, Takano M (2000) Rice NPH1 homologues OsNPH1a and OsNPH1b are differently photoregulated. Plant Cell Physiol 41:415–423

    PubMed  CAS  Google Scholar 

  • Kimura M, Kagawa T (2006) Phototropin and light signaling in phototropism. Curr Opin Plant Biol 9:503–508

    Article  PubMed  CAS  Google Scholar 

  • Lascève G, Leymarie J, Olney MA, Liscum E, Christie JM, Vavasseur A, Briggs WR (1999) Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol 120:605–614

    Article  PubMed  Google Scholar 

  • Li QH, Yang HQ (2006) Cryptochrome signaling in plants. Photochem Photobiol 83:94–101

    Article  CAS  Google Scholar 

  • Lin C, Todo T (2005) The cryptochromes. Genome Biol 6:220

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue-light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:7686–7690

    Google Scholar 

  • Lu H, Rate D, Song J, Greenberg J (2003) ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15:2408–2420

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275

    Article  PubMed  CAS  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WT (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103:2203–2237

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2003) Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol 132:1499–507

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2005) A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Plant Physiol 139:448–457

    Article  PubMed  CAS  Google Scholar 

  • Whippo CW, Hangarter RP (2006) Phototropism: bending towards enlightenment. Plant Cell 18:1110–1119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alfred Batschauer and Paul Galland, University of Marburg, Germany for use of light facilities and helpful suggestions. This work was funded by the CNRS and NSF (award# 0343737).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B., Grancher, N., Koyffmann, V. et al. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana . Planta 227, 1091–1099 (2008). https://doi.org/10.1007/s00425-007-0683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0683-z

Keywords

Navigation