Skip to main content
Log in

Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effects of cadmium (Cd) on cellular proteolytic responses were investigated in the roots and leaves of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 3 and 10 days in the presence of 0.3–300 μM Cd and compared to control plants grown in the absence of Cd. Roots of Cd treated plants accumulated four to fivefold Cd as much as mature leaves. Although 10 days of culture at high Cd concentrations inhibited plant growth, tomato plants recovered and were still able to grow again after Cd removal. Tomato roots and leaves are not modified in their proteolytic response with low Cd concentrations (≤3 μM) in the incubation medium. At higher Cd concentration, protein oxidation state and protease activities are modified in roots and leaves although in different ways. The soluble protein content of leaves decreased and protein carbonylation level increased indicative of an oxidative stress. Conversely, protein content of roots increased from 30 to 50%, but the amount of oxidized proteins decreased by two to threefold. Proteolysis responded earlier in leaves than in root to Cd stress. Additionally, whereas cysteine- and metallo-endopeptidase activities, as well as proteasome chymotrypsin activity and subunit expression level, increased in roots and leaves, serine-endopeptidase activities increased only in leaves. This contrasted response between roots and leaves may reflect differences in Cd compartmentation and/or complexation, antioxidant responses and metabolic sensitivity to Cd between plant tissues. The up-regulation of the 20S proteasome gene expression and proteolytic activity argues in favor of the involvement of the 20S proteasome in the degradation of oxidized proteins in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMC:

7-Amino-4-methyl coumarin

AOS:

Active oxygen species

AP:

Aminopeptidase

Cd:

Cadmium

DCI:

Dichloroisocoumarine

DMSO:

Dimethylsulfoxide

DNPH:

Dinitrophenylhydrazine

DW:

Dry weight

EP:

Endopeptidase

MG132:

N-acetyl-leucyl-leucyl-norleucinal

PI1:

Proteasome inhibitor 1

PMSF:

Phenylmethylsulfonylfluoride

RT:

Reverse transcriptase

STI:

Soybean trypsin inhibitor

TBARS:

Thiobarbituric acid reactive substances

References

  • Apel K, Hirt H (2004) Reactive oxygen species : metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and enzymic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Book AJ, Yang P, Scalf M, Smith LM, Vierstra RD (2005) Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis. Plant Physiol 138:1046–1057

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, Gaudillère JP, Raymond P (1998) Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol 117:1281–1291

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, Masclaux C, Feller U, Raymond P (2001) Protein hydrolysis and nitrogen remobilisation in plant life and senescence. In: Lea PJ, Morot-Gaudry JF (eds) Plant nitrogen. INRA Springer, Paris, pp 275–293

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbel MH, Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on oxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chen J, Goldsbrough PB (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239

    PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1998) Studies on cadmium toxicity in plants: a review. Environ Pollut 96:29–36

    Google Scholar 

  • Davies KJA (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative response to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Djebali W (2005) Reponses physiologiques, Biochimiques et ultrastructurales au stress induit par le cadmium chez la tomate. PhD thesis. Biology Department, University of Tunis, pp 70–84

  • Djebali W, Chaïbi W, Ghorbel MH (2002) Croissance, activité peroxydasique et modifications ultrastructurales induites par le cadmium dans la racine de tomate. Can J Bot 80:942–953

    Article  CAS  Google Scholar 

  • Djebali W, Zarrouk M, Brouquisse R, El Kahoui S, Liman F, Ghorbel MH, Chaïbi W (2005) Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol 7:258–368

    Article  CAS  Google Scholar 

  • Feussner K, Feussner I, Leopold I, Wasternack C (1997) Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato – the first stress-induced UBC of higher plants. FEBS Lett 409:211–215

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira ME, Yakushin S, Cohen G (1998) Disruption of the intracellular sulhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem 273:12703–12709

    Article  PubMed  CAS  Google Scholar 

  • Forzani C, Lobréaux S, Mari S, Briat JF, Lebrun M (2002) Metal resistance in yeast is mediated by the expression of a maize 20S proteasome α subunit. Gene 293:199–204

    Article  PubMed  CAS  Google Scholar 

  • Foyer C, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel J-P, Bein J-P, Ranjeva R, Montillet J-L (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  PubMed  CAS  Google Scholar 

  • Gharbi I, Ricard B, Rolin D, Maucourt M, Andrieu M-H, Bizid E, Smiti S, Brouquisse R (2007) Effect of hexokinase activity on tomato root metabolism during prolonged hypoxia. Plant Cell Environ 30:508–517

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Merker K, Sandig G, Davie KJA (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    Article  PubMed  CAS  Google Scholar 

  • Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    Article  PubMed  CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathway and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Plama JM, Sandalio LM, Corpas FJ, Gomez M, Del Rio LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  CAS  Google Scholar 

  • Ouariti O, Gouia H, Ghorbel MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35:347–354

    CAS  Google Scholar 

  • Obin MS, Shang F, Gong X, Handelman G, Blumberg J, Taylor A (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamine. FASEB J 12:561–569

    PubMed  CAS  Google Scholar 

  • Ortega-Villasante C, Rellan-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernandez LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, Mc Carthy I, Del Rio LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2006) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537

    Article  CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex Steudel. Plant Physiol 133:829–837

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  PubMed  CAS  Google Scholar 

  • Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJA, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637–642

    PubMed  CAS  Google Scholar 

  • Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, del Campo F, Hernandez LE (2006) Stress response of Zea mays to cadmium and mercury. Plant Soil 279:41–50

    Article  CAS  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio L (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to protein: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Saric T, Graef C Goldberg AL (2004) Pathway of degradation of peptides generated by proteasomes. A key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279:46723–46732

    Article  PubMed  CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet J, Vailhen D, Amekraz B, Moulin C, Ezan C, Garin J, Bourguignon J (2006) The early response of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analysis. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shang F, Taylor A (1995) Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells. Biochem J 307:297–303

    PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Davies KJA (2001) Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol Life Sci 58:1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help to define the process in plants. Curr Opin Plant Biol 8:165–173

    Article  PubMed  CAS  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52:103–115

    Article  PubMed  Google Scholar 

  • Vassilev A, Yordanov I (1997) Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulg J Plant Physiol 23:114–133

    CAS  Google Scholar 

  • Vido K, Spector D, Jagniel G, Lopez S, Toledano MB (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469–8474

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    CAS  Google Scholar 

  • Walling L (2006) Recycling or regulation? The role of amino-terminal modifying enzymes. Curr Opin Plant Biol 9:227–233

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Zhang G, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities and antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Ackowledgments

This work was supported in part by the Institut National de la Recherche Agronomique (INRA), the Commissariat à l’Energie Atomique (CEA), the Université de Bordeaux 1, and the Ministère de la Recherche de Tunisie, and in other part by the Comité Mixte de Coopération Universitaire Franco-Tunisien (grant n° 03G0911 to Wahbi Djebali and Latifa Boulila) and the CEA, CNRS, INRA and INSERM scientific program: “Toxicologie Nucléaire Environnementale 2004–2007” (grant to Cécile Polge).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Brouquisse.

Additional information

This paper is dedicated to Nathalie Galtier (1964–2005), who was senior researcher at the INRA Research Center, Villenave d’Ornon, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djebali, W., Gallusci, P., Polge, C. et al. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227, 625–639 (2008). https://doi.org/10.1007/s00425-007-0644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0644-6

Keywords

Navigation