Skip to main content
Log in

Occurrence of “mammalian” lignans in plant and water sources

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Enterolignans, also called “mammalian” lignans because they are formed in the intestine of mammals after ingestion of plant lignans, were identified for the first time in extracts of four tree species, i.e., in knot heartwood of the hardwood species Fagus sylvatica and in knot or stem heartwood of the softwood species Araucaria angustifolia, Picea smithiana, and Abies cilicia. They were also identified for the first time in grain extracts of cultivated plants, i.e., in 15 cereal species, in 3 nut species, and in sesame and linseeds. Furthermore, some plant lignans and enterolignans were identified in extracts of water from different sources, i.e., in sewage treatment plant influent and effluent and in humic water, and for the first time also in tap and seawater. They were present also in water processed through a water purification system (ultrapure water). As enterolignans seem to be abundant in the aquatic environment, the occurrence of enterolignans in plant sources is most likely due to uptake by the roots from the surrounding water. This uptake was also shown experimentally by treating wheat (Triticum aestivum ssp. vulgare) seeds with purified lignan-free water spiked with enterolactone (EL) during germination and growth. Both the remaining seeds and seedlings contained high EL levels, especially the roots. They also contained metabolites of EL, i.e., 7-hydroxy-EL and 7-oxo-EL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASE:

Accelerated solvent extraction

CLar:

Cyclolariciresinol

DHEL:

4,4′-Dihydroxyenterolactone

ED:

Enterodiol

EL:

Enterolactone

GC-MS:

Gas chromatography-mass spectrometry

HEL:

7-Hydroxyenterolactone

HMR:

7-Hydroxymatairesinol

HPLC-MS/MS:

High-performance liquid chromatography-tandem mass spectrometry

Lar:

Lariciresinol

MDMR:

Monodemethylated matairesinol

MR:

Matairesinol

OEL:

7-Oxoenterolactone

RP:

Reversed-phase

Sec:

Secoisolariciresinol

STP:

Sewage treatment plant

TOC:

Total organic carbon

References

  • Adlercreutz H, Fotsis T, Heikkinen R, Dwyer JT, Woods M, Goldin BR (1982) Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet 11:1295–1299

    Article  Google Scholar 

  • Adlercreutz H, van der Wildt J, Kinzel J, Attalla H, Wähälä K, Mäkelä T, Hase T, Fotsis T (1995a) Lignan and isoflavonoid conjugates in human urine. J Steroid Biochem Mol Biol 52:97–103

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz H, Fotsis T, Kurzer MS, Wähälä K, Mäkelä T, Hase T (1995b) Isotope dilution gas chromatographic-mass spectrometric method for the determination of unconjugated lignans and isoflavonoids in human feces, with preliminary results in omnivorous and vegetarian women. Anal Biochem 225:101–108

    Article  PubMed  CAS  Google Scholar 

  • Anderegg RJ, Rowe JW (1974) Lignans, the major component of resin from Araucaria angustifolia knots. Holzforschung 28:171–175

    Article  CAS  Google Scholar 

  • Axelson M, Setchell KDR (1980) The excretion of lignans in rats—evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett 123:337–342

    Article  Google Scholar 

  • Davin LB, Lewis NG (2003) An historical perspective on lignan biosynthesis: Monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochemistry Rev 2:257–288

    Article  CAS  Google Scholar 

  • Ekman R, Holmbom B (1989) Analysis by gas chromatography of the wood extractives in pulp and water samples from mechanical pulping of spruce. Nord Pulp Pap Res J 4:16–24

    Article  CAS  Google Scholar 

  • Freudenberg K, Knof L (1957) Die Lignane des Fichtenholzes. Chem Ber 90:2857–2869

    Article  Google Scholar 

  • Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, Nishibe S, Adlercreutz H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178–3186

    Article  PubMed  CAS  Google Scholar 

  • Holmbom B, Eckerman C, Eklund P, Hemming J, Nisula L, Reunanen M, Sjöholm R, Sundberg A, Sundberg K, Willför S (2003) Knots in trees—a new rich source of lignans. Phytochemistry Rev 2:331–340

    Article  CAS  Google Scholar 

  • Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case–control study of phyto-oestrogens and breast cancer. Lancet 350:990–994

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Price WE, Hick LA (2006) Simultaneous determination of isoflavones and lignans at trace levels in natural waters and wastewater samples using liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Comm Mass Spectrom 20:2411–2418

    Article  CAS  Google Scholar 

  • Kitts DD, Yuan YV, Wijewickreme AN, Thompson LU (1999) Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Mol Cell Biochem 202:91–100

    Article  PubMed  CAS  Google Scholar 

  • Kurzer MS, Lampe JW, Martini MC, Adlercreutz H (1995) Fecal lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. Cancer Epidemiol Biomarkers Prev 4:353–358

    PubMed  CAS  Google Scholar 

  • Lee SH, Jung BH, Kim SY, Chung BC (2004) Determination of phytoestrogens in traditional medicinal herbs using gas chromatography-mass spectrometry. J Nutr Biochem 15:452–460

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä TH, Wähälä KT, Hase TA (2000) Synthesis of enterolactone and enterodiol precursors as potential inhibitors of human estrogen synthetase (aromatase). Steroids 65:437–441

    Article  PubMed  Google Scholar 

  • Mäkelä TH, Kaltia SA, Wähälä KT, Hase TA (2001) α,β-Dibenzyl-γ-butyrolactone lignan alcohols: total synthesis of (±)-7′-hydroxyenterolactone, (±)-7′-hydroxymatairesinol and (±)-8-hydroxyenterolactone. Steroids 66:777–784

    Article  PubMed  Google Scholar 

  • Matilainen A, Vieno N, Tuhkanen T (2006) Efficiency of the activated carbon filtration in the natural organic matter removal. Environ Int 32:324–331

    Article  PubMed  CAS  Google Scholar 

  • Mazur W, Adlercreutz H (1998) Natural and anthropogenic environmental oestrogens: The scientific basis for risk assessment. Naturally occurring oestrogens in food. Pure Appl Chem 70:1759–1776

    CAS  Google Scholar 

  • Milder IEJ, Arts ICW, van de Putte B, Venema DP, Hollman PCH (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402

    Article  PubMed  CAS  Google Scholar 

  • Peñalvo JL, Haajanen KM, Botting N, Adlercreutz H (2005) Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. J Agric Food Chem 53:9342–9347

    Article  PubMed  CAS  Google Scholar 

  • Pietinen P, Stumpf K, Männisto S, Kataja B, Uusitupa M, Adlercreutz H (2001) Serum enterolactone and risk of breast cancer: a case-control study in Eastern Finland. Cancer Epidemiol Biomarkers Prev 10:339–344

    PubMed  CAS  Google Scholar 

  • Prasad K (2000) Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9:220–225

    PubMed  Google Scholar 

  • Saarinen NM, Huovinen R, Wärri A, Mäkelä SI, Valentín-Blasini L, Sjöholm R, Ämmälä J, Lehtilä R, Eckerman C, Collan YU, Santti R (2002a) Enterolactone inhibits the growth of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in the rat. Mol Cancer Ther 1:869–876

    PubMed  CAS  Google Scholar 

  • Saarinen NM, Smeds A, Mäkelä SI, Ämmälä J, Hakala K, Pihlava JM, Ryhänen EL, Sjöholm R, Santti R (2002b) Structural determinants of plant lignans for the formation of enterolactone in vivo. J Chromatogr B 777:311–319

    Article  CAS  Google Scholar 

  • Setchell KDR, Lawson AM, Mitchell FL, Adlercreutz H, Kirk DN, Axelson M (1980) Lignans in man and in animal species. Nature 288:740–742

    Article  Google Scholar 

  • Smeds A, Hakala K (2003) Liquid chromatographic-tandem mass spectrometric method for the plant lignan 7-hydroxymatairesinol and its potential metabolites in human plasma. J Chromatogr B 793:297–308

    Article  CAS  Google Scholar 

  • Smeds AI, Saarinen NM, Hurmerinta TT, Penttinen PE, Sjöholm RE, Mäkelä SI (2004) Urinary excretion of lignans after administration of isolated plant lignans to rats: the effect of single dose and ten-day exposures. J Chromatogr B 813:303–312

    Article  CAS  Google Scholar 

  • Smeds AI, Saarinen NM, Eklund PC, Sjöholm RE, Mäkelä SI (2005) New lignan metabolites in rat urine. J Chromatogr B 816:87–97

    Article  CAS  Google Scholar 

  • Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochemistry Rev 2:371–390

    Article  CAS  Google Scholar 

  • Vanharanta M, Voutilainen S, Lakka TA, van der Lee M, Adlercreutz H, Salonen JT (1999) Risk of acute coronary events according to serum concentrations of enterolactone: a prospective population-based case-control study. Lancet 354:2112–2115

    Article  PubMed  CAS  Google Scholar 

  • Vanharanta M, Voutilainen S, Nurmi T, Kaikkonen J, Jackson Roberts L, Morrow JD, Adlercreutz H, Salonen JT (2002) Association between low serum enterolactone and increased plasma F2-isoprostanes, a measure of lipid peroxidation. Atheroscler 160:465–469

    Article  CAS  Google Scholar 

  • Vieno N, Tuhkanen T, Kronberg L (2006) Removal of pharmaceuticals in drinking water treatment: Effect of chemical coagulation. Environ Technol 27:183–192

    Article  PubMed  CAS  Google Scholar 

  • Wähälä K, Mäkelä T, Bäckström R, Brunow G, Hase T (1986) Synthesis of the [2H]-labelled urinary lignans, enterolactone and enterodiol, and the phytoestrogen daidzein and its metabolites equol and O-demethyl-angolensin. J Chem Soc Perkin Trans I 95–98

  • Willför S, Hemming J, Reunanen M, Eckerman C, Holmbom B (2003) Lignans and lipophilic extractives in Norway spruce knots and stemwood. Holzforschung 57:27–36

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Pedro Fardim at the Laboratory of Fibre and Cellulose Technology, Åbo Akademi University, Prof. Harzemşah Hafizoğlu at Bartin Faculty of Forestry, Zonguldak Karaelmas University, Turkey, and Prof. Mohammad Arfan at the Department of Chemistry, University of Peshawar, Peshawar, Pakistan are acknowledged for providing the tree samples. This work is part of the activities at the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Programme by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika I. Smeds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeds, A.I., Willför, S.M., Pietarinen, S.P. et al. Occurrence of “mammalian” lignans in plant and water sources. Planta 226, 639–646 (2007). https://doi.org/10.1007/s00425-007-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0512-4

Keywords

Navigation