Skip to main content
Log in

Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The expression of a gene, encoding a dehydrin protein designated as DHN24 was analyzed at the protein level in two groups of Solanum species differing in cold acclimation ability. The DHN24 protein displays consensus amino acid sequences of dehydrins, termed K- and S-segments. The S-segment precedes three K-segments, classifying the protein into SK3-type dehydrins. A group of Solanum species able to cold acclimation constituted by S. sogarandinum and S. tuberosum, cv. Aster, and a second one composed of a S. sogarandinum line, that lost ability to cold acclimation, and of S. tuberosum, cv. Irga, displaying low ability to cold acclimation were studied. Under control conditions, noticeable levels of the DHN24 protein was observed in stems, tubers, and roots of Solanum species. No protein was detected in leaves. During low temperature treatment the DHN24 protein level substantially increased in tubers, in transporting organs and in apical parts, and only a small increase was observed in leaves. The increase in protein abundance was only observed in the plants able to cold acclimate and was found to parallel the acclimation capacity. Upon drought stress, the DHN24 level decreased in stems and in leaves, but increased in apical parts. These results suggest that Dhn24 expression is regulated by organ specific factors in the absence of stress and by factors related to cold acclimation processes during low temperature treatment in collaboration with organ-specific factors. A putative function of the SK3-type dehydrin proteins during plant growth and in the tolerance to low temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DHN24:

Dehydrin protein of 24 kDa

SK3-type dehydrin:

Dehydrin containing a single S-segment followed by three K-segments

LEA:

Late embryogenesis abundant

References

  • Alsheikh MK, Heyen BJ, Randall SK (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem 278:40882–40889

    Article  PubMed  CAS  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AA, Downs CA, Voinikov VK (2000) Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants. J Plant Physiol 156:797–800

    CAS  Google Scholar 

  • Bravo LA, Close TJ, Corcuera LJ, Guy CL (1999) Characterisation of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol Plant 106:177–183

    Article  CAS  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and association with phenotypic traits. New Phytol 137:61–74

    Article  CAS  Google Scholar 

  • Cellier F, Conéjéro G, Breitler J-C, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116:319–328

    Article  PubMed  CAS  Google Scholar 

  • Chen RD, Campeau N, Greer AF, Bellemare G, Tabaeizadeh Z (1993) Sequence of a novel abscisic acid- and drought-induced cDNA from wild tomato (Lycopersicon chilense). Plant Physiol 103:301

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Chung F, Kim S-Y, Yi SY, Choi D (2003) Capsicum annum dehydrin, an osmotic-stress gene in hot paper plants. Mol Cells 15:327–332

    PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Danyluk J, Perron A, Houde M, Lamin A, Flower B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    Article  PubMed  CAS  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt J, Tobin EM (1996) A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants. Plant Cell 8:31–41

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Egerton-Warburton LM, Balsamo RA, Close TJ (1997) Temporal accumulation and ultrastructural localization of dehydrins in Zeya mays L. Physiol Plant 101:545–555

    Article  CAS  Google Scholar 

  • Foster R, Izawa T, Chua N-H (1994) Plant bZIP Proteins gather at ACGT elements. FASEB J 8:192–200

    PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) High hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Gillet B, Eymery F, Beyly A, Peltier G, Rey P (1998) Molecular characterization of CDSP34 a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants and regulation of CDSP34 expression by ABA and high illumination. Plant J 16:257–262

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Goday A, Jensen AB, Culiáñez-Macià FA, Mar Albà M, Figueras M, Serratosa J, Torrent M, Pagès M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localisation signals. Plant Cell 6:351–360

    Article  PubMed  CAS  Google Scholar 

  • Godoy JA, Lunar R, Torres-Shumann S, Morena J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localisation of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26:1921–1934

    Article  PubMed  CAS  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Terashim S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • Hara M, Terashima S, Fukaya T, Kuboi T (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    PubMed  CAS  Google Scholar 

  • Hara M, Terashim S, Fukaya T, Kuboi T (2004a) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290–298

    Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004b) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biol 42:657–662

    Article  CAS  Google Scholar 

  • Hattori T, Totsuka M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    Article  PubMed  CAS  Google Scholar 

  • Heino P, Palva ET (2003) Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K (eds), Topics in current genetics, vol. 4. Plant responses to abiotic stress, Springer, Berlin Heidelberg New York, pp 151–186

  • Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130:675–687

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acid Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanism of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Liberte S, Sarhan F (1995) Immunolocalisation of freezing tolerance associated proteins in cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8:583–593

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1997) Chilling tolerance during emergence of cowpea associate with a dehydrin and slow electrolyte leakage. Crop Sci 37:1270–1277

    Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Karlson DT, Fujino T, Kimura S, Baba K, Itoh T, Ashworth EN (2003) Novel plasmodesmata association of dehydrin-like proteins in cold acclimation red-osier dogwood (Cornus sericea). Tree Physiol 23:759–767

    PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  PubMed  CAS  Google Scholar 

  • Kaye C, Neve L, Hofig A, Li Q-B, Haskell D, Guy C (1998) Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116:1367–1377

    Article  PubMed  CAS  Google Scholar 

  • Kirch H-H, van Berkel J, Glaczinki H, Salamini F, Gebhardt C (1997) Structural organization, expression and promoter activity of a cold-stress-inducible gene of potato (Solanum tuberosum L.). Plant Mol Biol 33:897–909

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamagushi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35:225–231

    PubMed  CAS  Google Scholar 

  • Kizis D, Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30:679–689

    Article  PubMed  CAS  Google Scholar 

  • Koag M-C, Fenton RD, Wilken S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607–1619

    Article  PubMed  CAS  Google Scholar 

  • Kosugi S, Suzuka I, Ohashi Y (1995) Two of three promoter elements identified in a rice gene for proliferating cell nuclear antigen are essential for meristematic tissue-specific expression. Plant J 7:877–886

    Article  PubMed  CAS  Google Scholar 

  • Krüger C, Berkowith O, Stephan UW, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277:25062–25069

    Article  PubMed  CAS  Google Scholar 

  • Lång V (1993) The role ABA and ABA-induced gene expression in cold acclimation of Arabidopsis thaliana. Ph.D. dissertation, Uppsala Genetic Center, Sweden

  • Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativus L.). Mol Cells 19:212–218

    PubMed  CAS  Google Scholar 

  • Li R, Brawley SH, Close TJ (1998) Proteins immunologically related to dehydrins in fucoid algae. J Phycol 34:642–650

    Article  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470

    Article  PubMed  CAS  Google Scholar 

  • Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiol 130:111–119

    Article  PubMed  CAS  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bzip proteins. Trends Biochem 20:506–510

    Article  CAS  Google Scholar 

  • Mitwisha L, Brandt W, McCread L, Lindsey GG (1998) HSP12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521

    Article  PubMed  Google Scholar 

  • Monroy AF, Castonguay Y, Laberge S, Sarhan F, Vezina LP, Dhindsa RS (1993) A new cold-induced alfalfa gene is associated with enhanced hardening to subzero temperature. Plant Physiol 102:873–879

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Piechulla B, Merforth N, Rudolph B (1998) Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol Biol 38:655–662

    Article  PubMed  CAS  Google Scholar 

  • Porat R, Pasentis K, Rozentzvieg D, Gerasopoulos D, Falara V, Samach A, Luric S, Kanellis AK (2004) Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures. Physiol Plant 120:256–264

    Article  PubMed  CAS  Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eucaryotic translational elements. CABIOS 7:203–206

    PubMed  CAS  Google Scholar 

  • Pruvot G, Cuiné S, Peltier G, Rey P (1996) Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants. Planta 198:471–479

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MV, Mäkela P, Svenson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Morency M-J, Drevet C, Jouanin L, Séguin A (2000) Isolation and characterization of a dehydrin gene from white spurs induced upon wounding, drought and cold stress. Plant Mol Biol 43:1–10

    Article  PubMed  CAS  Google Scholar 

  • Rinne PLH, Kaikuranta PLM, ven der Plas LHW, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EM, Svenson JT, Malatrasi M, Choi D-W, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110:852–858

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2001) Changes in gene expression in a wild potato (S. sogarandinum) during cold acclimation. Acta Plant Physiol 23:117–126

    Article  CAS  Google Scholar 

  • Rorat T, Irzykowski W (1996) Changes in mRNA population during cold acclimation in two potato lines of Solanum sogarandinum differing by their cold hardiness. Acta Physiol Plant 18:25–32

    CAS  Google Scholar 

  • Rorat T, Irzykowski W, Grygorowicz WJ (1997) Identification and isolation of novel cold induced genes in potato (Solanum sogarandinum). Plant Sci 124:69–78

    Article  CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Berbezy P, Irzykowski W (1998) Isolation and expression of cold specific genes in potato (Solanum sogarandinum). Plant Sci 133:57–67

    Article  CAS  Google Scholar 

  • Rorat T, Irzykowski W, Cuiné S, Becuwe N, Rey P (2001) PSII-S gene expression, photosynthetic activity and abundance of plastid thiredoxin and lipid-associated proteins during chilling stress in Solanum species differing in freezing tolerance. Physiol Plant 113:72–78

    Article  CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta 218:878–885

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Aoyama T, Oka A (2000) Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J 24:703–711

    Article  PubMed  CAS  Google Scholar 

  • Sarhan F, Oullet F, Vazquez-Tello A (1997) The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol Plant 101:439–445

    Article  CAS  Google Scholar 

  • Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet 215:326–331

    Article  PubMed  CAS  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis abundant proteins from soybean. Plant Physiol 128:822–832

    Article  PubMed  CAS  Google Scholar 

  • Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (l-proline)-type II structure. Plant Physiol 131:963–975

    Article  PubMed  CAS  Google Scholar 

  • Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of the Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Svenson J, Ismail AM, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JM (eds), Sensing, signalling and cell adaptation. Elsevier, Amsterdam, pp 155–171

  • Tabaei-Aghdaei SR, Harrison P, Pearce RS (2000) Expression of dehydration-stress-related genes in the crowns of wheatgrasses species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult.] having contrasting acclimation to salt, cold and drought. Plant Cell Environ 23:561–571

    Article  CAS  Google Scholar 

  • Takahashi R, Shimosaka E (1997) cDNA sequence analysis and expression of two cold-regulated genes in soybean. Plant Sci 123:93–104

    Article  CAS  Google Scholar 

  • Tan S-K, Sage-Ono K, Kamada H (2000) Cloning and characterization of ECPP44, a cDNA encoding a 44-kilodalton phosphoprotein relating to somatic embryogenesis in carrot. Plant Biotechnol 17:61–68

    CAS  Google Scholar 

  • Teakle GR, Manfield IW, Graham JF, Gilmartin PM (2002) Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics. Plant Mol Biol 50:43–57

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation. Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP (2004) The promoter of the Vicia faba L. leg hemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and non-legume plants. Mol Plant Microbe Interact 17:62–69

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant cell 9:491–507

    Article  PubMed  CAS  Google Scholar 

  • Whitsitt MS, Collins RG, Mullet JE (1997) Modulation of dehydration tolerance in soybean seedlings. Plant Physiol 114:917–925

    PubMed  CAS  Google Scholar 

  • Wisniewski M, Webb R, Balsamo R, Close TJ, Yu XM, Griffith M (1999) Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica). Physiol Plant 105:600–608

    Article  CAS  Google Scholar 

  • Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  PubMed  Google Scholar 

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Rorat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rorat, T., Szabala, B.M., Grygorowicz, W.J. et al. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224, 205–221 (2006). https://doi.org/10.1007/s00425-005-0200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0200-1

Keywords

Navigation