Skip to main content
Log in

Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant cell wall polysaccharides vary in quantity and structure between different organs and during development. However, quantitative analysis of individual polysaccharides remains challenging, and relatively little is known about any such variation in polysaccharides in organs of the model plant Arabidopsis thaliana. We have analysed plant cell wall pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis. By highly specific enzymatic digestion of a polysaccharide in a cell wall preparation, a unique fingerprint of short oligosaccharides was produced. These oligosaccharides gave quantitative and structural information on the original polysaccharide chain. We analysed enzyme-accessible polygalacturonan (PGA), linear β(1,4) galactan and linear α(1,5) arabinan in several organs of Arabidopsis: roots, young leaves, old leaves, lower and upper inflorescence stems, seeds and callus. We found that this PGA constitutes a high proportion of cell wall material (CWM), up to 15% depending on the organ. In all organs, between 60 and 80% of the PGA was highly esterified in a blockwise fashion, and surprisingly, dispersely esterified PGA was hardly detected. We found enzyme-accessible linear galactan and arabinan are both present as a minor polysaccharide in all the organs. The amount of galactan ranged from ~0.04 to 0.25% of CWM, and linear arabinan constituted between 0.015 and 0.1%. Higher levels of galactan correlated with expanding tissues, supporting the hypothesis that this polysaccharide is involved in wall extension. We show by analysis of mur4 that the methods and results presented here also provide a basis for studies of pectic polysaccharides in Arabidopsis mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMAC:

2-Aminoacridone

ANTS:

8-Aminonaphthalene-1,3,6 trisulphonic acid

Ara:

Arabinose

CWM:

Cell wall material

DM:

Degree of methylation

DP:

Degree of polymerisation

endo-PG:

Endopolygalacturonase

FTIR:

Fourier transform infra-red spectroscopy

Gal:

Galactose

GalU:

Galacturonic acid

PACE:

Polysaccharide analysis by carbohydrate gel electrophoresis

PGA:

Polygalacturonan

MS:

Mass spectrometry

OGA:

Oligogalacturonan

RGI:

Rhamnogalacturonan I

RGII:

Rhamnogalacturonan II

WT:

Wild type

References

  • Braithwaite KL, Barna T, Spurway TD, Charnock SJ, Black GW, Hughes N, Lakey JH, Virden R, Hazlewood GP, Henrissat B, Gilbert HJ (1997) Evidence that galactanase A from Pseudomonas fluorescens subspecies cellulosa is a retaining family 53 glycosyl hydrolase in which E161 and E270 are the catalytic residues. Biochemistry 36:15489–15500

    Article  PubMed  CAS  Google Scholar 

  • Burget EG, Reiter WD (1999) The mur4 mutant of Arabidopsis is partially defective in the de novo synthesis of uridine diphospho l-arabinose. Plant Physiol 121:383–389

    Article  PubMed  CAS  Google Scholar 

  • Burget EG, Verma R, Molhoj M, Reiter WD (2003) The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15:523–531

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Carpita N, Reiter WD, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16:385–392

    Article  PubMed  CAS  Google Scholar 

  • Gardner SL, Burrell MM, Fry SC (2002) Screening of Arabidopsis thaliana stems for variation in cell wall polysaccharides. Phytochemistry 60:241–254

    Article  PubMed  CAS  Google Scholar 

  • Goubet F, Jackson P, Deery M, Dupree P (2002) Polysaccharide analysis using carbohydrate gel electrophoresis (PACE): a method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal Biochem 300:53–68

    Article  PubMed  CAS  Google Scholar 

  • Goubet F, Morriswood B, Dupree P (2003) Analysis of methylated and unmethylated polygalacturonic acid structure by polysaccharide analysis using carbohydrate gel electrophoresis. Anal Biochem 321:174–182

    Article  PubMed  CAS  Google Scholar 

  • Goubet F, Ström A, Dupree P, Williams MAK (2005) An investigation of pectin methylation patterns by two independent techniques: capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydr Res 340:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P (2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218:27–36

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B, Coutinho PM, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47:55–72

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci USA 100:11783–11788

    Article  PubMed  CAS  Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 171:79–120

    PubMed  CAS  Google Scholar 

  • Lerouxel O, Choo TS, Seveno M, Usadel B, Faye L, Lerouge P, Pauly M (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol 130:1754–1763

    Article  PubMed  CAS  Google Scholar 

  • Limberg G, Korner R, Buchholt HC, Christensen TM, Roepstorff P, Mikkelsen JD (2000) Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from Aspergillus niger. Carbohydr Res 327:293–307

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon IM, Jardine WG, O’Kennedy N, Renard CM, Jarvis MC (2002) Pectic methyl and nonmethyl esters in potato cell walls. J Agric Food Chem 50:342–346

    Article  PubMed  CAS  Google Scholar 

  • McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1–>4)-beta-d-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22:105–113

    Article  PubMed  CAS  Google Scholar 

  • McCartney L, Steele-King CG, Jordan E, Knox JP (2003) Cell wall pectic (1–>4)-beta-d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J 33:447–454

    Article  PubMed  CAS  Google Scholar 

  • McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ (1997) Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo-mode of action. Biochem J 323:547–555

    PubMed  CAS  Google Scholar 

  • Obro J, Harholt J, Scheller HV, Orfila C (2004) Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 65:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • O’Shea MG, Samuel MS, Konik CM, Morell MK (1998) Fluorophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labeling and high-resolution separation. Carbohydr Res 307:1–12

    Article  CAS  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Eberhard S, Albersheim P, Darvill A, York WS (2001) Effects of the mur1 mutation on xyloglucans produced by suspension-cultured Arabidopsis thaliana cells. Planta 214:67–74

    PubMed  CAS  Google Scholar 

  • Peng L, Hocart CH, Redmond JW, Williamson RE (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211:406–414

    Article  PubMed  CAS  Google Scholar 

  • Prime TA, Sherrier DJ, Mahon P, Packman LC, Dupree P (2000) A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis 21:3488–3499

    Article  PubMed  CAS  Google Scholar 

  • Proctor MR, Taylor EJ, Nurizzo D, Turkenburg JP, Lloyd RM, Vardakou M, Davies GJ, Gilbert HJ (2005) Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc Natl Acad Sci USA 102:2697–2702

    Article  PubMed  CAS  Google Scholar 

  • Reiter WD, Chapple C, Somerville CR (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261:1032–1035

    Article  PubMed  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

  • Wee EG, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Willats WG, Steele-King CG, McCartney L, Orfila C, Marcus SE, Knox JP (2000) Making and using antibody probes to study plant cell walls. Plant Physiol Biochem 38:27–36

    Article  CAS  Google Scholar 

  • Willats WG, McCartney L, Knox JP (2001) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213:37–44

    Article  PubMed  CAS  Google Scholar 

  • Zablackis E, Huang J, Müller B, Darvill AG, Albersheim P (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Julie Howard and Kathryn Lilley (Cambridge Centre for Proteomics, University of Cambridge) for their help on mass spectrometric analyses, and Tom Dunkley for critical reading of the manuscript. We thank Syngene (Cambridge, UK) for the gift of GeneTools software. We thank Yoichi Tsumuraya (Saitama, Japan) for the gift of galacto-oligosaccharides. We thank Elner Rathbone, (Sigma, UK) for providing some reagents for MALDI-TOF MS. The work was funded by grants from the BBSRC and a BBSRC studentship to CJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dupree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, C.J., Tailford, L.E., Welchman, H. et al. Enzymatic fingerprinting of Arabidopsis pectic polysaccharides using polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Planta 224, 163–174 (2006). https://doi.org/10.1007/s00425-005-0185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0185-9

Keywords

Navigation