Skip to main content
Log in

Increased pathogen resistance and yield in transgenic plants expressing combinations of the modified antimicrobial peptides based on indolicidin and magainin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Reverse peptide of indolicidin (Rev4), a 13-residue peptide based on the sequence of indolicidin, has been shown to possess both strong antimicrobial and protease inhibitory activities in vitro. To evaluate its efficacy in vivo, we produced and evaluated transgenic tobacco (Nicotiana tabacum L.) and Arabidopsis thaliana [(L.) Heynh.] plants expressing Rev4 with different signal peptide sequences for pathogen resistance. All transgenic plants showed normal growth and development, an indication of no or low cytotoxicity of the peptide. Furthermore, the transgenic plants exhibited elevated resistance to three bacterial and two oomycete pathogens. Interestingly, tobacco plants expressing Rev4 displayed enhanced yield compared to the control as indicated by an increased biomass production by as much as 34% in two field trials. When Rev4 was coexpressed with another antimicrobial peptide, Myp30, the disease resistance levels in the transgenic Arabidopsis were enhanced. These findings suggest the potential of using these peptides to protect plants from microbial pathogens and to enhance yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Rev4:

Reverse peptide of indolicidin

Myp30:

A modified antimicrobial peptide based on Magainin 2

RIL :

Gene symbol for Rev4

PR1b:

Pathogenesis related protein gene 1b from tobacco

References

  • Alan AR, Blowers A, Earle ED (2004) Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease. Plant Cell Rep 22:388–396

    Article  PubMed  CAS  Google Scholar 

  • Allefs SJHM, De Jong ER, Florack DEA, Hoogendoorn C, Stiekema WJ (1996) Erwinia soft rot resistance of potato cultivars expressing antimicrobial peptide tachyplesin I. Molecular Breeding 2:97–105

    Article  CAS  Google Scholar 

  • Allefs SJHM, Florack DEA, Hoogendoorn C, Stiekema WJ (1995) Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not altered. Am Potato J 72:437–445

    CAS  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733

    Article  PubMed  CAS  Google Scholar 

  • Bowling SA, Guo A, Cao H, Gordon AS, Klessig DF, Dong X (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell 6:1845–1857

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Critical Rev Plant Sci 16:297–323

    Article  CAS  Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA 95:6531–6536

    Article  PubMed  CAS  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen BJC, Van Huijsduijnen HRAM, Van Loon LC, Bol JF (1986) Molecular characterization of messenger RNAs for ‘pathogenesis-related’ proteins 1a, 1b and 1c, induced by TMV infection of tobacco. EMBO J 5:34–40

    Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock REW (1996) Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 271:19298–19303

    Article  PubMed  CAS  Google Scholar 

  • Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W (1995) Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Res 4:132–141

    Article  PubMed  CAS  Google Scholar 

  • Francois IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD, Proost P, Schaaper WM, Cammue BP, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Diamond G (2000) The Role of Cationic Antimicrobial Peptides in Innate Host Defenses. Trends Microbiol 8:402–410

    Article  PubMed  CAS  Google Scholar 

  • Lee DG, Kim HK, Kim SA, Park Y, Park SC, Jang SH, Hahm KS (2003) Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem Biophys Res Commun 305:305–310

    Article  PubMed  CAS  Google Scholar 

  • Li QQ, Lawrence CB, Davies HM, Everett NP (2002) A tridecapeptide possesses both antimicrobial and protease-inhibitory activities. Peptides 23:1–6

    Article  PubMed  Google Scholar 

  • Li QQ, Lawrence CB, Xing H-Y, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635–639

    Article  PubMed  CAS  Google Scholar 

  • Li QQ, Von Lanken C, Yang J, Lawrence CB, Hunt AG (2000) The yeast polyadenylate-binding protein (PAB1) gene acts as a disease lesion mimic gene when expressed in plants. Plant Mol Biol 42:335–344

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogens, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  • Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ (1997) Promoter/leader deletion analysis and plant expression vector with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res. 6:143–156

    Article  PubMed  CAS  Google Scholar 

  • Matanic VCA, Castilla V (2004) Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents 23:382–389

    Article  PubMed  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) ANTIBIOTIC USE IN PLANT AGRICULTURE. Annu Rev Phytopathol 40:443–465

    Article  PubMed  CAS  Google Scholar 

  • Mills D, Hammerschlag FA, Nordeen RO, Owens LD (1994) Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci 104:17–22

    Article  CAS  Google Scholar 

  • Osusky M, Osuska L, Hancock RE, Kay WW, Misra S (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13:181–190

    Article  PubMed  CAS  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad- spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Owens LD, Heutte TM (1997) A single amino acid substitution in the antimicrobial defense protein Cecropin B Is associated with diminished degradation by leaf intercellular fluid. Mol Plant Microbe Interact 10:525–528

    Article  PubMed  CAS  Google Scholar 

  • Ponti D, Mangoni ML, Mignogna G, Simmaco M, Barra D (2003) An amphibian antimicrobial peptide variant expressed in Nicotiana tabacum confers resistance to phytopathogens. Biochem J 370:121–127

    Article  PubMed  CAS  Google Scholar 

  • Rausher MD (2001) Co-evolution and plant resistance to natural enemies. Nature 411:857–864

    Article  PubMed  CAS  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267:4292–4295

    PubMed  CAS  Google Scholar 

  • Subbalakshmi C, Bikshapathy E, Sitaram N, Nagaraj R (2000) Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin. Biochem Biophys Res Commun 274:714–716

    Article  PubMed  CAS  Google Scholar 

  • Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol 131:1580–1590

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Li QQ (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 53:37–50

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Ejiri M, Mizuno S (2003) Biogenic peptides and their potential use. Curr Pharm Des 9:1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Kentucky Tobacco Research Board and Interlink Biotechnologies LLC. We thank Dr. Xingnian Dong for providing us a bacterial pathogen. We also thank Ruth Babbitt, Troy Bass, Richard Mundell, and Chunmei Wang for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshun Quinn Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, H., Lawrence, C.B., Chambers, O. et al. Increased pathogen resistance and yield in transgenic plants expressing combinations of the modified antimicrobial peptides based on indolicidin and magainin. Planta 223, 1024–1032 (2006). https://doi.org/10.1007/s00425-005-0143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0143-6

Keywords

Navigation