Skip to main content
Log in

Nitrate assimilation in the forage legume Lotus japonicus L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Nitrate assimilation in the model legume, Lotus japonicus, has been investigated using a variety of approaches. A gene encoding a nitrate-inducible nitrate reductase (NR) has been cloned and appears to be the only NR gene present in the genome. Most of the nitrate reductase activity (NRA) is found in the roots and the plant assimilates the bulk of its nitrogen in that tissue. We calculate that the observed rates of nitrate reduction are compatible with the growth requirement for reduced nitrogen. The NR mRNA, NRA and the nitrate content do not show a strong diurnal rhythm in the roots and assimilation continues during the dark period although export of assimilated N to the shoot is lower during this time. In shoots, the previous low NR activity may be further inactivated during the dark either by a phosphorylation mechanism or due to reduced nitrate flux coincident with a decreased delivery through the transpiration stream. From nitrate-sufficient conditions, the removal of nitrate from the external medium causes a rapid drop in hydraulic conductivity and a decline in nitrate and reduced-N export. Root nitrate content, NR and nitrate transporter (NRT2) mRNA decline over a period of 2 days to barely detectable levels. On resupply, a coordinated increase of NR and NRT2 mRNA, and NRA is seen within hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NR:

Nitrate reductase

NRA:

Nitrate reductase activity

References

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–519

    CAS  Google Scholar 

  • Bachmann M, Huber JL, Liao PC, Gage DA, Huber SC (1996a) The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14–3-3 protein. FEBS Lett 387:127–131

    Article  PubMed  CAS  Google Scholar 

  • Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC (1996b) Identification of ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8:505–517

    Article  PubMed  CAS  Google Scholar 

  • Botrel A, Kaiser WM (1997) Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta 201:496–501

    Article  PubMed  CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta 199:372–381

    Article  CAS  Google Scholar 

  • Choi HK, Kleinhofs A, An G (1989) Nucleotide sequence of rice nitrate reductase genes. Plant Mol Biol 13:731–733

    Article  PubMed  CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Saker LR, Purves JV (1989) Depression of nitrate and ammonium transport in barley plants with diminished sulfate status—evidence of co-regulation of nitrogen and sulfate intake. J Exp Bot 40:953–963

    Article  CAS  Google Scholar 

  • Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM, Smith M, Bellissimo D, Davis RW (1988) Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc Natl Acad Sci USA 85:5006–5010

    Article  PubMed  CAS  Google Scholar 

  • Daniel-Vedele F, Dorbe MF, Caboche M, Rouze P (1989) Cloning and analysis of the tomato nitrate reductase encoding gene–protein domain structure and amino acid homologies in higher-plants. Gene 85:371–380

    Article  PubMed  CAS  Google Scholar 

  • Deane-Drummond CE, Clarkson DT, Johnson CB (1980) The effect of differential root and shoot temperature on the nitrate reductase activity, assayed in vivo and in vitro in roots of Hordeum vulgare (barley). Planta 148:455–461

    CAS  Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1995) Diurnal regulation of NO3− uptake in soybean plants. 1. Changes in NO3− influx, efflux, and n utilization in the plant during the day-night cycle. J Exp Bot 46:1585–1594

    Article  CAS  Google Scholar 

  • Deng MD, Moureaux T, Cherel I, Boutin JP, Caboche M (1991) Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiol Biochem 29:239–247

    CAS  Google Scholar 

  • Douglas P, Morrice N, MacKintosh C (1995) Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett 377:113–117

    Article  PubMed  CAS  Google Scholar 

  • Drew MC, Saker LR (1984) Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley. Evidence for non-allosteric regulation. Planta 160:500–507

    Article  CAS  Google Scholar 

  • Else MA, Davies WJ, Malone M, Jackson MB (1995) A negative hydraulic message from oxygen-deficient roots of tomato plants?: influence of soil flooding on leaf water potential, leaf expansion, and synchrony between stomatal conductance and root hydraulic conductivity. Plant Physiol 109:1017

    PubMed  CAS  Google Scholar 

  • Fido RJ (1987) Purification of nitrate reductase from spinach (Spinacea oleracea L.) by immunoaffinity chromatography using a monoclonal antibody. Plant Sci 50:111–115

    Article  CAS  Google Scholar 

  • Forde BG, Clarkson DT (1999) Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv Bot Res 30:1–90

    Article  CAS  Google Scholar 

  • Galangau F, Daniel-Vedele F, Moureaux T, Dorbe MF, Leydecker MT, Caboche M (1988) Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol 88:383–388

    PubMed  CAS  Google Scholar 

  • Glaab J, Kaiser WM (1993) Rapid modulation of nitrate reductase in pea roots. Planta 191:173–179

    Article  CAS  Google Scholar 

  • Grundemann D, Koepsell H (1994) Ethidium-bromide staining during denaturation with glyoxal for sensitive detection of RNA in agarose-gel electrophoresis. Anal Biochem 216:459–461

    Article  PubMed  CAS  Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  • Hoff T, Stummann BM, Henningsen KW (1991) Cloning and expression of a gene encoding a root specific nitrate reductase in bean (Phaseolus vulgaris). Physiol Plant 82:197–204

    Article  CAS  Google Scholar 

  • Huber JL, Huber SC, Campbell WH, Redinbaugh MG (1992) Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys 296:58–65

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1990

    Article  PubMed  CAS  Google Scholar 

  • Karmoker JL, Clarkson DT, Saker LR, Rooney JM, Purves JV (1991) Sulfate deprivation depresses the transport of nitrogen to the xylem and the hydraulic conductivity of barley (Hordeum vulgare L.) roots. Planta 185:269–278

    Article  CAS  Google Scholar 

  • Kawachi T, Shoji Y, Sugimoto T, Oji Y, Kleinhofs A, Warner RL, Ohtake N, Ohyama T, Sueyoshi K (2002) Role of xylem sap nitrate in the regulation of nitrate reductase gene expression in leaves of barley (Hordeum vulgare L.) seedlings. Soil Sci Plant Nutr 48:79–86

    CAS  Google Scholar 

  • van der Leij M, Smith SJ, Miller AJ (1998) Remobilisation of vacuolar stored nitrate in barley root cells. Planta 205:64–72

    Article  Google Scholar 

  • Li XZ, Larson DE, Glibetic M, Oaks A (1995) Effect of glutamine on the induction of nitrate reductase. Physiol Plant 93:740

    Article  CAS  Google Scholar 

  • Mackintosh C, Douglas P, Lillo C (1995) Identification of a protein that inhibits the phosphorylated form of nitrate reductase from spinach (Spinacia oleracea) leaves. Plant Physiol 107:451–457

    PubMed  CAS  Google Scholar 

  • Man HM, Abd-El BGK, Stegmann P, Weiner H, Kaiser WM (1999) The activation state of nitrate reductase is not always correlated with total nitrate reductase activity in leaves. Planta 209:462–468

    Article  PubMed  CAS  Google Scholar 

  • Matt P, Schurr U, Klein D, Krapp A, Stitt M (1998) Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Planta 207:27–41

    Article  PubMed  CAS  Google Scholar 

  • Mellor GE, Sheard RW (1971) Comparison of the nitrate metabolism in orchardgrass and birdsfoot trefoil. Can J Plant Sci 51:399–404

    Article  CAS  Google Scholar 

  • Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A, MacKintosh C (1996) Phosphorylated nitrate reductase from spinach leaves is inhibited by 14–3-3 proteins and activated by fusicoccin. Curr Biol 6:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Murray MJ, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucl Acid Res 8:4321–4325

    Article  CAS  Google Scholar 

  • Oaks A (1992) A re-evaluation of nitrogen assimilation in roots. BioScience 42:103–111

    Article  Google Scholar 

  • Palms B, Goupil P, Engler JD, VanDerStraeten D, VanMontagu M, Rambour S (1996) Evidence for the nitrate-dependent spatial regulation of the nitrate reductase gene in chicory roots. Planta 200:20–27

    Article  PubMed  CAS  Google Scholar 

  • Prosser IM (1994) Cloning, sequence and expression of spinach nitrate reductase. PhD thesis, University of Bristol

  • Prosser IM, Lazarus CM (1990) Nucleotide sequence of a spinach nitrate reductase cDNA. Plant Mol Biol 15:187–190

    Article  PubMed  CAS  Google Scholar 

  • Ruiz MT, Prosser IM, Hirel B, Clarkson DT (1999) A cDNA sequence (accession no. X94299) encoding a cytosolic subunit of glutamine synthetase in the model legume Lotus japonicus. (PGR99–031). Plant Physiol 119:1148–1148

    Google Scholar 

  • Salsac L, Chaillou S, Morotgaudry JF, Lesaint C (1987) Nitrate and ammonium nutrition in plants. Plant Physiol Biochem 25:805–812

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Smith D (1981) Birdsfoot trefoil. In: Forage management in the north. Kendall Hunt Publishing Co., pp 117–124

  • Stohr C, Mack G (2001) Diurnal changes in nitrogen assimilation of tobacco roots. J Exp Bot 52:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Streit L, Martin B, Harper JE (1987) A method for the separation and partial purification of the three forms of nitrate reductase present in wild-type soybean leaves. Plant Physiol 84:654–657

    Article  PubMed  CAS  Google Scholar 

  • Sueyoshi K, Kleinhofs A, Warner RL (1995) Expression of NADH-specific and NAD(P)H-bispecific nitrate reductase genes in response to nitrate in barley. Plant Physiol 107:1303–1311

    PubMed  CAS  Google Scholar 

  • Trueman LJ, Onyeocha I, Forde BG (1996) Recent advances in the molecular biology of a family of eukaryotic high affinity nitrate transporters. Plant Physiol Biochem 34:621–627

    CAS  Google Scholar 

  • Vaucheret H, Kronenberger J, Rouze P, Caboche M (1989) Complete nucleotide sequence of the 2 homologous tobacco nitrate reductase genes. Plant Mol Biol 12:597–600

    Article  CAS  Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17:2362

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse RN, Smyth AJ, Massonneau A, Prosser IM, Clarkson DT (1996) Molecular cloning and characterisation of asparagine synthetase from Lotus japonicus: dynamics of asparagine synthesis in N-sufficient conditions. Plant Mol Biol 30:883–897

    Article  PubMed  CAS  Google Scholar 

  • Woodall J (1994) Studies of glutamine synthetase in Lotus species and the occurrence of root GS2 in other legumes. PhD thesis, University of London

  • Woodall J, Forde BG (1996) Glutamine synthetase polypeptides in the roots of 55 legume species in relation to their climatic origin and the partitioning of nitrate assimilation. Plant Cell Environ 19:848–858

    Article  CAS  Google Scholar 

  • Wray JL, Filner P (1970) Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem J 119:715–725

    PubMed  CAS  Google Scholar 

  • Wu S, Lu Q, Kriz AL, Harper JE (1995) Identification of cDNA clones corresponding to two inducible nitrate reductase genes in soybean: analysis in wild-type and nr∼1 mutant. Plant Mol Biol 29:491–506

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Iggy Onyeocha for the NRT2 clone, Lez Saker and Judith Purves for assistance with 15N analysis. R.N.W. and A.M. gratefully acknowledge support by a BBSRC PMB II award and A.J.S. by funding from the E.U. Long Ashton Research Station received grant-aided support from the B.B.S.R.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Prosser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prosser, I.M., Massonneau, A., Smyth, A.J. et al. Nitrate assimilation in the forage legume Lotus japonicus L.. Planta 223, 821–834 (2006). https://doi.org/10.1007/s00425-005-0124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0124-9

Keywords

Navigation