Skip to main content
Log in

Changes in macromolecular movement accompany organogenesis in thin cell layers of Torenia fournieri

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A range of fluorescently labelled probes of increasing molecular weight was used to monitor diffusion via the symplast in regenerating thin cell layer (TCL) explants of Torenia fournieri. An increase in intercellular movement of these molecules was associated with the earliest stages of vegetative shoot regeneration, with the movement of a 10 kDa dextran (FD 10000) observed between epidermal cells prior to the appearance of the first cell divisions. A low frequency of dextran movement in thin cell layers maintained under non-regenerating conditions was also observed, indicating a possible wound induced increase in intercellular movement. Dextran movement between epidermal cells reached a peak by day 4 of culture and then declined as cell division centres (CDCs) formed, became meristematic regions and finally emerged as adventitious shoots. Within CDCs, testing with small fluorescent probes (CF: carboxyfluorescein, mw 376 Da and F(Glu)3: fluorescein-triglutamic acid, mw 799 Da) revealed a mosaic of cell isolation and regions of maintained symplastic linkage. Within shoots, surface cells of the presumptive apical meristem permitted the intercellular movement of 10 kDa dextrans but epidermal cells of the surrounding leaf primordia did not permit dextran movement. In some cases, intercellular movement of CF was maintained within leaf primordia. Symplastic movement of labelled dextrans during regeneration in Torenia thin cell layers represents a significant increase in the basal size exclusion limit (SEL) of this tissue and reveals the potential for intercellular trafficking of developmentally related endogenous macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDC:

Cell division centre

CF:

Carboxyfluorescein

FD:

FITC labelled dextran

F(Glu)3 :

FITC labelled triglutamic acid

FITC:

Fluorescein isothiocyanate

SEL:

Size exclusion limit

TCL:

Thin cell layer

References

  • Bandurski RS, Cohen JD, Slovin JP, Reinecke DM (1995) Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones. Kluwer, Dordrecht, pp 39–65

    Google Scholar 

  • Bergmans A, de Boer D, van Bel A, van der Schoot C (1993) The initiation and development of Iris flowers: permeability changes in the apex symplasm. Flowering Newsl 16:19–26

    Google Scholar 

  • Button J, Kochba J, Bornman CH (1974) Fine structure of and embryoid development from embryogenic ovular callus of ‘Shamouti’ orange (Citrus sinensis Osb.). J Exp Bot 25:446–457

    Article  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (1999) Cell-to-cell communication via plant endomembranes. Cell Biol Int 23:653–661

    Article  PubMed  CAS  Google Scholar 

  • Cantrill LC, Overall RL, Goodwin PB (2001) Cell-to-cell communication during adventitious shoot regeneration in tobacco thin cell layers. Planta 214:206–214

    PubMed  CAS  Google Scholar 

  • Carr DJ (1976) Plasmodesmata in growth and development. In: Gunning BES and Robards AW (eds) Intercellular communication in plants: studies on Plasmodesmata. Springer, Berlin Heidelberg New York, pp 243–289

    Google Scholar 

  • Chlyah H (1973) Néoformation dirigée à partir de fragments d’organes de Torenia fournieri (Lind.) cultivés in vitro. Biol Plant 15:80–87

    CAS  Google Scholar 

  • Choi YE, Soh WY (1997) Enhanced somatic single embryo formation by plasmolysing pretreatment from cultured ginseng cotyledons. Plant Sci 130:197–206

    Article  CAS  Google Scholar 

  • Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405–1412

    Article  PubMed  Google Scholar 

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development 120:3247–3255

    CAS  Google Scholar 

  • Ehlers K, Kollmann R (2000) Synchronisation of mitotic activity in protoplast-derived Solanum nigrum L. microcalluses is correlated with plasmodesmal connectivity. Planta 210:269–278

    Article  PubMed  CAS  Google Scholar 

  • Ehlers K, van Bel AJE (1999) The physiological and developmental consequences of plasmodesmal connectivity. In: van Kesteren P and van Bel AJE (ed) Plasmodesmata, structure, function, role in cell communication. Springer, Berlin Heidelberg New York, pp 243–260

    Google Scholar 

  • Erwee MG, Goodwin PB (1985) Symplast domains in extrastelar tissues of Egeria densa Planch. Planta 163:9–19

    Article  CAS  Google Scholar 

  • Fisher DB, Cash-Clark CE (2000) Sieve tube unloading and post-phloem transport of fluorescent tracers and proteins injected into sieve tubes via severed aphid stylets. Plant Physiol 123:125–137

    Article  PubMed  CAS  Google Scholar 

  • Gisel A, Barella S, Hempel FD, Zambryski PC (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889

    PubMed  CAS  Google Scholar 

  • Gisel A, Hempel FD, Barella S, Zambryski P (2002) Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc Natl Acad Sci USA 99:1713–1717

    Article  PubMed  CAS  Google Scholar 

  • Goodwin PB (1983) Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157:124–130

    Article  CAS  Google Scholar 

  • Goodwin PB, Cantrill LC (1999) Use and limitations of fluorochromes for plasmodesmal research. In: van Kesteren P and van Bel AJE (ed) Plasmodesmata, structure, function, role in cell communication. Springer, Berlin Heidelberg New York, pp 67–84

    Google Scholar 

  • Grabski S, de Feijter AW, Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5:25–38

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES (1978) Age-related and origin-related control of the numbers of plasmodesmata in cell walls of developing Azolla roots. Planta 143:181–190

    Article  Google Scholar 

  • Heinlein M, Epel BL (2004) Macromolecular transport and signalling through plasmodesmata. Int Rev Cytol 235: 93–164

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Overall RL (1996) Measurement of the electrical resistance of plasmodesmata and membranes of corn suspension-culture cells. Planta 199:537–544

    Article  Google Scholar 

  • Jackson D, Kim JY (2003) Intercellular signaling: an elusive player steps forth. Curr Biol 13:R349–R350

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen KE, Møller JV (1979) Use of flexible polymers as probes of glomerular pore size. Am J Physiol 236:F103–F111

    PubMed  Google Scholar 

  • Kempers R, van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L. have a molecular exclusion limit of at least 10 kDa. Planta 201:195–210

    Article  CAS  Google Scholar 

  • Kim I, Hempel FD, Sha K, Pfluger J, Zambryski PC (2002a) Identification of a developmental transition in plasmodesmatal function during embryogenesis in Arabidopsis thaliana. Development 129:1261–1272

    PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002b) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci USA 99:4103–4108

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 102:2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkowska M (1991) Autoradiographic studies on the role of plasmodesmata in the transport of gibberellin. Planta 183:294–299

    Article  CAS  Google Scholar 

  • le Maire M, Aggerbeck LP, Monteilhet C, Andersen JP, Moller JV (1986) The use of high-performance liquid chromatography for the determination of size and molecular weight of proteins: a caution and a list of membrane proteins suitable as standards. Anal Biochem 154:525–535

    Article  PubMed  Google Scholar 

  • Linsmaier EM, Skoog S (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473–497

    Article  CAS  Google Scholar 

  • Oparka KJ, Prior DAM, Wright KM (1995) Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana. J Exp Bot 46:187–197

    Article  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts L, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  PubMed  CAS  Google Scholar 

  • Ormenese S, Havelange A, Bernier, G, van der Schoot C (2002) The shoot apical meristem of Sinapis alba L. expands its central symplasmic field during the floral transition. Planta 215:67–78

    Article  PubMed  CAS  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Overall RL, Gunning BES (1982) Intercellular communication in Azolla roots: II. Electrical coupling. Protoplasma 111:151–160

    Article  Google Scholar 

  • Rinne PLH, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organisation during chilling-induced release from dormancy. Plant J 26:249–264

    Article  PubMed  CAS  Google Scholar 

  • Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ (2001) Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31–44

    Article  PubMed  CAS  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Env 26:103–124

    Article  Google Scholar 

  • van der Schoot C (1996) The role of symplasmic organisation and cell-cell communication in dormancy. In: Lang GA (ed) Plant dormancy. CAB International, Wallingford UK, pp 59–81

    Google Scholar 

  • van der Schoot C, Lucas WJ (1995) Microinjection and the study of tissue patterning in plant apices. In: Maliga P, Klessig DF, Cashmore AR, Gruissen W, Varner JE (eds) Methods in plant molecular biology, a laboratory course manual. Cold Spring Harbor Laboratory Press, USA, pp 173–189

    Google Scholar 

  • van der Schoot C, Dietrich MA, Storms M, Verbeke JA and Lucas WJ (1995) Establishment of a cell-to-cell pathway between separate carpels during gynoecium development. Planta 195:450–455

    Article  Google Scholar 

  • Schulz SR, Jensen WA (1968) Capsella embryogenesis: the egg, zygote, and young embryo. Am J Bot 55:807–819

    Article  Google Scholar 

  • Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005) Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots. Plant J 41:319–331

    Article  PubMed  CAS  Google Scholar 

  • Storms MMH, van der Schoot C, Prins M, Kormelink R, van Lent JWM, Goldbach RW (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    Article  CAS  Google Scholar 

  • Tanimoto S, Harada H (1979) Influences of environmental and physiological conditions on floral bud formation of Torenia stem segments cultured in vitro. Z Pflanzenphysiology 95:33–41

    Google Scholar 

  • Tran Thanh Van M, Dien NT, Chlyah A (1974) Regulation of organogenesis in small explants of superficial tissue of Nicotiana tabacum L. Planta 119:149–159

    Article  Google Scholar 

  • Tucker EB and Tucker JE (1993) Cell-to-cell selectivity in staminal hairs of Setcreasea purpurea. Protoplasma 174:36–44

    Article  Google Scholar 

  • Vaquero C, Turner PA, Demangeat G, Sanz A, Serra MT, Roberts K, Garcia-Luque I (1994) The 3a protein from cucumber mosaic virus increases the gating capacity of plasmodesmata in transgenic tobacco plants. J Gen Virol 75:3193–3197

    PubMed  CAS  Google Scholar 

  • Villalobos VM, Yeung EC, Thorpe TA (1985) Origin of adventitious shoots in excised radiata pine cotyledons cultured in vitro. Can J Bot 63:2172–2176

    Article  Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    Article  PubMed  CAS  Google Scholar 

  • Wetherell DF (1984) Enhanced adventive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell Tissue Organ Cult 3:221–227

    Article  Google Scholar 

  • Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745

    Article  PubMed  CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 205–247

    Google Scholar 

Download references

Acknowledgements

Many thanks to Dr Maciej Hempel for introducing us to Torenia TCL culture and to Dr. Sri Sriskandarajah for help in the setting up stages. LC Cantrill acknowledges support from the Christian Rowe Thornett Postgraduate Scholarship. This study was supported by grants to RL Overall and PB Goodwin from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence C. Cantrill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantrill, L.C., Overall, R.L. & Goodwin, P.B. Changes in macromolecular movement accompany organogenesis in thin cell layers of Torenia fournieri . Planta 222, 933–946 (2005). https://doi.org/10.1007/s00425-005-0034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0034-x

Keywords

Navigation