Skip to main content
Log in

Integrin-like protein at the invaginated plasma membrane of epidermal cells in mature leaves of the marine angiosperm Zostera marina L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

By immunoblotting with anti-human integrin β polyclonal antibodies (β1, β3 or β5), a single distinct band of about 60 kDa was detected in total protein extracts from mature leaves of the seagrass Zostera marina L., but no band was detected in total protein extracts from immature seagrass leaves, freshwater grass leaves or Arabidopsis thaliana (L.) Heynh. leaves. This integrin-like protein was detected by indirect immunofluorescence microscopy on the surface of non-spherical protoplasts of epidermal cells isolated from mature seagrass leaves using an anti-integrin β3 polyclonal antibody. Electron-microscopic analyses with the same antibody indicated that this integrin-like protein was localized specifically in the invaginated plasma membrane of epidermal cells in mature seagrass leaves. Therefore, this integrin-like protein of about 60 kDa may be involved in the developmentally regulated invagination of the plasma membrane in epidermal cells of the seagrass Z. marina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a,b
Fig. 3
Fig. 4a–c
Fig. 5a,b

Similar content being viewed by others

Abbreviations

CM :

Crude microsomal

ECM :

Extracellular matrix

FITC :

Fluorescein isothiocyanate

PM :

Plasma membrane

References

  • Arai M, Pak JY, Nomura K, Nitta T (1991) Seawater-resistant, non-spherical protoplasts from seagrass leaves. Physiol Plant 83:551–559

    Article  Google Scholar 

  • Barnabas AD, Butler V, Steinke TD (1977) Zostera capensis Setchell. I. Observation on the fine structure of the leaf epidermis. Z Pflanzenphysiol 85:417–427

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239

    CAS  PubMed  Google Scholar 

  • Faik A, Laboure AM, Gulino D, Mandaron P, Falconet D (1998) A plant surface protein sharing structural properties with animal integrins. Eur J Biochem 253:552–559

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara T, Pak JY, Ohwaki Y, Tsujimura H, Nitta T (1996) Tissue-specific expression of the gene for a putative plasma membrane H+-ATPase in seagrass. Plant Physiol 110:35–42

    Article  CAS  PubMed  Google Scholar 

  • Gens JS, Reuzeau C, Doolittle KW, McNally JG, Pickard BG (1996) Covisualization by computational optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts. Protoplasma 194:215–230

    CAS  PubMed  Google Scholar 

  • Gunning BES (1977) Transfer cells and their roles in transport of solutes in plants. Sci Prog Oxf 64:539–568

    Google Scholar 

  • Hynes R (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Katembe WJ, Swatzell LJ, Makaroff CA, Kiss JZ (1997) Immunolocalization of integrin-like proteins in Arabidopsis and Chara. Physiol Plant 99:7–14

    Article  CAS  PubMed  Google Scholar 

  • Kiba A, Sugimoto M, Toyoda K, Ichinose Y, Yamada T, Shiraishi T (1998) Interaction between cell wall and plasma membrane via RDG motif is implicated in plant defense responses. Plant Cell Physiol 39:1245–1249

    CAS  Google Scholar 

  • Kuo J, Aioi K, Iizumi H (1988) Comparative leaf structure and its functional significance in Phyllospadix iwatensis Makino and Phyllospadix japonicus Makino (Zosteraceae). Aquat Bot 30:169–187

    Article  Google Scholar 

  • Laboure AM, Faik A, Mandaron P, Falconet D (1999) RGD-dependent growth of maize calluses and immunodetection of an integrin-like protein. FEBS Lett 442:123–128

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Laval V, Chabannes M, Carriere M, Canut H, Barre A, Rouge P, Pont-Lezica R, Galaud J (1999) A family of Arabidopsis plasma membrane receptors presenting animal β-integrin domains. Biochim Biophys Acta 1435:61–70

    Google Scholar 

  • Lee-Stadelmann OY, Stadelmann EJ (1989) Plasmolysis and deplasmolysis. Methods Enzymol 174:225–246

    CAS  Google Scholar 

  • Muramatsu Y, Harada A, Ohwaki Y, Kasahara Y, Takagi T, Fukuhara T (2002) Salt-tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L. Plant Cell Physiol 43:1137–1145

    Article  CAS  PubMed  Google Scholar 

  • Pak J-Y, Fukuhara T, Nitta T (1995) Discrete subcellular localization of membrane-bound ATPase activity in marine angiosperms and marine algae. Planta 196:15–22

    CAS  PubMed  Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:173–196

    Article  Google Scholar 

  • Smith PK, Krohn RJ, Hermanson GT, Mallia AK, Garner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    CAS  PubMed  Google Scholar 

  • Sun Y, Qian H, Xu XD, Han Y, Yen LF, Sun DY (2000) Integrin-like proteins in the pollen tube: detection, localization and function. Plant Cell Physiol 41:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Swatzell LJ, Edelmann RE, Makaroff CA, Kiss JZ (1999) Integrin-like proteins are localized to plasma membrane fractions, not plastids, in Arabidopsis. Plant Cell Physiol 40:173–183

    CAS  PubMed  Google Scholar 

  • Takagi S, Hayashi T, Ryu J-H, Nakanishi Y (2001) Cell-wall-dependent organization of actin cytoskeleton in Vallisneria mesophyll cells. Plant Morphol 13:11–20

    Google Scholar 

  • Yoshida S, Uemura M, Niki T, Sakai A, Gusta LV (1983) Partition of membrane particles in aqueous two-polymer phase system and its practical use for purification of plasma membranes from plants. Plant Physiol 72:105–114

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. S. Takagi of Osaka University for his useful suggestions and valuable advice. This research was supported in part by grants from the Salt Science Research Foundation (No. 9822) and the Tokyu Foundation (No. 207) to T.F., and by a Sasakawa Scientific Research Grant (No. 14-372MK) to Y.M. from the Japan Science Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fukuhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurai, M., Pak, JY., Muramatsu, Y. et al. Integrin-like protein at the invaginated plasma membrane of epidermal cells in mature leaves of the marine angiosperm Zostera marina L.. Planta 220, 271–277 (2004). https://doi.org/10.1007/s00425-004-1348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1348-9

Keywords

Navigation