Skip to main content

Advertisement

Log in

tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene (Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem I and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

CP26 and CP29:

chlorophyll proteins 26 and 29

PS I and PS II:

photosystems I and II

LHC I and LHC II:

light harvesting complex of PS I and PS II, respectively

PMSF:

phenylmethylsulfonyl fluoride

tla :

truncated light-harvesting chlorophyll antenna

References

  • Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Google Scholar 

  • Bassi R, Soen SY, Frank G, Zuber H, Rochaix J-D (1992) Characterization of chlorophyll a/b proteins of photosystem Ⅰ from Chlamydomonas reinhardtii. J Biol Chem 267:25714–25721

    CAS  PubMed  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Google Scholar 

  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem Ⅱ of chloroplasts. Biochim Biophys Acta 376:116–25

    CAS  PubMed  Google Scholar 

  • Davies JP, Yildiz F, Grossman AR (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6:53–63

    Article  CAS  PubMed  Google Scholar 

  • Davies JP, Yildiz F, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2159

    CAS  PubMed  Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The arginosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809

    CAS  PubMed  Google Scholar 

  • Di Paolo ML, Peruffo dal Belin A, Bassi R (1990) Immunological studies on chlorophyll a/b proteins and their distribution in thylakoid membrane domains. Planta 181:275–286

    Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    CAS  PubMed  Google Scholar 

  • Falbel T, Meehl JB, Staehelin LA (1996) Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol 112:821–832

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Melis A (1984) Photosystem electron transport capacity and light-harvesting antenna size in maize chloroplasts. Plant Physiol 74:993–998

    CAS  Google Scholar 

  • Glick RE, Melis A (1988) Minimum photosynthetic unit size in system-Ⅰ and system-Ⅱ of barley chloroplasts. Biochim Biophys Acta 934:151–155

    CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas source book: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Huner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, Cambridge

  • Kok B (1953) Experiments on photosynthesis by Chlorella in flashing light. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington DC, pp 63–75

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Masuda T, Tanaka A, Melis A (2003) Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression. Plant Mol Biol (in press)

  • Maxwell DP, Falk S, Huner NPA (1995) Photosystem Ⅱ excitation pressure and development of resistance to photoinhibition. 1. Light harvesting complex Ⅱ abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107:687–694

    CAS  PubMed  Google Scholar 

  • Melis A (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Phil Trans R Soc London B 323:397–409

    CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    CAS  Google Scholar 

  • Melis A (1996) Excitation energy transfer: functional and dynamic aspects of Lhc (cab) proteins. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer, Dordrecht, pp 523–538

    Google Scholar 

  • Melis A (1999) Photosystem-Ⅱ damage and repair cycle in chloroplasts. What modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    PubMed  Google Scholar 

  • Melis A, Anderson JM (1983) Structural and functional organization of the photosystems in spinach chloroplasts: antenna size, relative electron transport capacity, and chlorophyll composition. Biochim Biophys Acta 724:473–484

    CAS  Google Scholar 

  • Melis A, Brown JS (1980) Stoichiometry of system Ⅰ and system Ⅱ reaction centers and of plastoquinone in different photosynthetic membranes. Proc Natl Acad Sci USA 77:4712–4716

    CAS  Google Scholar 

  • Melis A, Duysens LNM (1979) Biphasic energy conversion kinetics and absorbance difference spectra of PS II of chloroplasts. Evidence for two different PS II reaction centers. Photochem Photobiol 29:373–382

    CAS  Google Scholar 

  • Melis A, Spangfort M, Andersson B (1987) Light-absorption and electron transport balance between photosystem-II and photosystem-I in spinach chloroplasts. Photochem Photobiol 45:129–136

    CAS  Google Scholar 

  • Melis A, Neidhardt J, Benemann JR (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10:515–525

    Article  Google Scholar 

  • Myers J (1957) Algal culture. In: Kirk RE, Othmer DE (eds) Encyclopedia of chemical technology. Interscience, New York, pp 649–668

  • Nakada E, Asada Y, Arai T, Miyake J (1995) Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J Ferment Bioengin 80:53–57

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J Appl Phycol 9:503–510

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1999) Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment. J Appl Phycol 11:195-201

    Article  Google Scholar 

  • Naus J, Melis A (1991) Changes of photosystem stoichiometry during cell growth in Dunaliella salina cultures. Plant Cell Physiol 32:569–575

    CAS  Google Scholar 

  • Neale PJ, Cullen JJ, Lesser MP, Melis A (1993) Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation. In: Yamamota HY, Smith CM (eds) Photosynthetic responses to the environment. Curr Top Plant Physiol 8:61–77

    CAS  Google Scholar 

  • Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynth Res 56:175–184

    CAS  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380

    CAS  Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in wild type and a Chl b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source. Planta 211:335–344

    Article  CAS  PubMed  Google Scholar 

  • Polle JEW, Kanakagiri S, Benemann JR, Melis A (2001a) Maximizing photosynthetic efficiencies and hydrogen production in microalga cultures. In: Miyake J, Matsunaga T, San Pietro A (eds) BioHydrogen Ⅱ. Pergamon/Elsevier Science, Oxford, pp 111–130

  • Polle JEW, Niyogi KK, Melis A (2001b) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-Ⅱ but not that of photosystem-Ⅰ in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42:482–491

    Article  CAS  PubMed  Google Scholar 

  • Powles S (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    CAS  Google Scholar 

  • Radmer R, Kok B (1977) Photosynthesis: limited yields, unlimited dreams. Bioscience 29:599–605

    Google Scholar 

  • Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF, Melis A (1990) Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress. Plant Physiol 93:1433–1440

    CAS  Google Scholar 

  • Tanaka A, Melis A (1997) Irradiance-dependent changes in the size and composition of the chlorophyll a-b light-harvesting complex in the green alga Dunaliella salina. Plant Cell Physiol 38:17–24

    CAS  Google Scholar 

  • Webb MR, Melis A (1995) Chloroplast response in Dunaliella salina to irradiance stress. Effect on thylakoid membrane assembly and function. Plant Physiol 107:885–893

    CAS  PubMed  Google Scholar 

  • Yakovlev AG, Taisova AS, Fetisova ZG (2002) Light control over the size of an antenna unit building block as an efficient strategy for light harvesting in photosynthesis. FEBS Lett 512:129–132

    Article  CAS  PubMed  Google Scholar 

  • Zaborsky OR (1998) BioHydrogen. Plenum, New York

Download references

Acknowledgements

J.E.W. Polle and S-D. Kanakagiri contributed equally to this research. The work was produced under DOE–UCB Cooperative Agreement DE-FC36-00GO10536. We thank Ms. Yar-Fen Teng for skillful technical assistance and Dr. Kris Niyogi for making available the fluorescence video imaging system used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Melis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polle, J.E.W., Kanakagiri, SD. & Melis, A. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217, 49–59 (2003). https://doi.org/10.1007/s00425-002-0968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-002-0968-1

Keywords

Navigation