Skip to main content

Advertisement

Log in

Evidence for vacuolar-type proton pumps in nonmitochondrial and inositol 1,4,5- trisphosphate-sensitive calcium stores of insulin-secreting cells

  • Orginal Article
  • Molecular and cellular physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

This study examines whether acidic, vacuolar-type, proton-pump-carrying organelles of insulinsecreting cells (clonal endocrine pancreatic cell line INS-1) function as rapidly exchanging, inositol 1,4,5-trisphosphate-sensitive calcium stores. Calcium uptake into calcium stores will be modulated by the proton concentration within the stores, since calcium pumps in general appear to mediate a countertransport of calcium with protons. We therefore tested for sensitivity of calcium sequestration by nonmitochondrial stores (inhibition of mitochondrial calcium uptake by 2 μM ruthenium red) in saponin-permeabilized cells to proton-conducting ionophores and proton pump inhibition, using this as a marker for involvement of acidic organelles. Calcium sequestration was partially inhibited by the protonophores nigericin (10–50 μM) and carbonylcyanide m-chlorophenylhydrazone (CCCP; 20-50 μM), as well as by inclusion of 30 mM NH4C1. Bafilomycin A1 a potent and selective inhibitor of vacuolar-type proton pumps, alone (1 – 500 nM) had no effect on calcium sequestration, however, it induced an inhibitory effect in the presence of nigericin or CCCP, even at low concentrations (5 μM) of these ionophores, lacking itself an inhibitory action on calcium sequestration. Bafilomycin A, then was already maximally active at a concentration as low as 10 nM. Corresponding to inhibition of total nonmitochondrial calcium sequestration, filling of inositol 1,4,5-trisphosphate-sensitive stores was decreased or even abolished by the protonophores alone or the protonophores combined with bafilomycin A1. We conclude that vacuolartype proton pumps are present in at least a part of nonmitochondrial and inositol 1,4,5-trisphosphate-sensitive calcium stores in INS-1 cells. This assigns these stores to organelles such as secretory granules, the trans Golgi network, or endosomes. Luminal acidity of these stores will stimulate calcium sequestration by providing more protons for countertransport of calcium by calcium pumps. High concentrations of protonophores may be required for inhibitory effects because otherwise the proton pumps may be able to compensate sufficiently for ionophore-mediated proton loss. The lack of effect of bafilomycin A, without protonophores may be due to a sufficient luminal buffering capacity or to preceding inhibition of the pump by an inside-positive transmembrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130: 167–178

    Article  PubMed  CAS  Google Scholar 

  2. Bezprozvanny I, Ehrlich BE (1995) The inositol 1,4,5-trisphos- phate (InsP3) receptor. J Membr Biol 145:205 216

    PubMed  Google Scholar 

  3. Bird G StJ. Rossier MF, Hughes AR, Shears SB, Armstrong DL, Putney JW Jr (1992) Activation of Ca2+ entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature 352:162–165

    Article  Google Scholar 

  4. Blondel O, Bell GI, Moody M, Miller RJ, Gibbons SJ (1994) Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+store in secretory granules of insulin-producing cells. J Biol Chem 269:27167–27170

    PubMed  CAS  Google Scholar 

  5. Blondel O, Moody MM, DePaoli AM, Sharp AH, Ross CA, Swift H, Bell GI (1994) Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc Natl Acad Sci USA 91:7777–7781

    Article  PubMed  CAS  Google Scholar 

  6. Bode HP, Göke B (1994) Protein kinase C activates capacita- tive calcium entry in the insulin secreting cell line RINm5F. FEBS Lett 339:307–311

    Article  PubMed  CAS  Google Scholar 

  7. Bode HP. Eder B, Trautmann M (1994) An investigation on the role of vacuolar-type proton pumps and luminal acidity in calcium sequestration by nonmitochondrial and inositol 1,4,5- trisphosphate-sensitive intracellular calcium stores in clonal insulin-secreting cells. Eur J Biochem 222:869 877

    Article  PubMed  Google Scholar 

  8. Bowman EJ, Siebers A, Altendorf K (1988) Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci USA 87: 9270–9274

    Google Scholar 

  9. Chanat E, Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115:1505–1519

    Article  PubMed  CAS  Google Scholar 

  10. DeLisle RC, Hopfer U (1986) Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am J Physiol 250: G489-G496

    CAS  Google Scholar 

  11. Drucker DJ, Philippe J, Mojsov S (1988) Proglucagon gene expression and posttranslational processing in a hamster islet cell line. Endocrinology 123:1861–1867

    Article  PubMed  CAS  Google Scholar 

  12. Fehmann HC, Strowski M, Göke B (1995) Functional characterization of somatostatin receptors expressed on hamster glucagonoma cells. Am J Physiol 268:E40-E47

    PubMed  CAS  Google Scholar 

  13. Forgac M (1989) Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    PubMed  CAS  Google Scholar 

  14. Galione A (1993) Cyclic ADP-ribose: a new way to control calcium. Science 259:325–326

    Article  PubMed  CAS  Google Scholar 

  15. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  16. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755-C786

    PubMed  CAS  Google Scholar 

  17. Harvey WR (1992) Physiology of V-type ATPases. J Exp Biol 172: 1–17

    PubMed  CAS  Google Scholar 

  18. Hashimoto S, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J (1988) Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 107:2523–2531

    Article  PubMed  CAS  Google Scholar 

  19. Hellman B, Gylfe E, Bergsten P, Grapengiesser E, Lund PE, Berts A, Tengholm A, Pipeleers DG, Ling Z (1994) Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia 37 [Suppl 2]:S11-S20

    Article  PubMed  CAS  Google Scholar 

  20. Islam S, Berggren PO (1993) Mobilization of Ca2+ by thapsi- gargin and 2,5-di-(t-butyl)-l,4-benzohydroquinone in perme- abilized insulin-secreting RINm5F cells: evidence for separate uptake and release compartments in inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Biochem J 293:423–429

    PubMed  CAS  Google Scholar 

  21. Islam MS, Larsson O, Berggren PO (1993) Cyclic ADP-ribose in β cells. Science 262:584–585

    Article  PubMed  CAS  Google Scholar 

  22. Joseph SK, Williams RJ, Corkey BE, Matschinsky FM, Williamson JR (1984) The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells. J Biol Chem 259: 12952–12955

    PubMed  CAS  Google Scholar 

  23. Knepper MA, Packer R, Good DW (1989) Ammonia transport in the kidney. Physiol Rev 69:179–249

    PubMed  CAS  Google Scholar 

  24. Leech CA, Holz GG IV, Habener JF (1994) Voltage-independent calcium channels mediate slow oscillations of cytosolic calcium that are glucose dependent in pancreatic β-cells. Endocrinology 135:365–372

    Article  PubMed  CAS  Google Scholar 

  25. Levy D, Seigneuret M, Bluzat A, Rigaud JL (1990) Evidence for proton countertransport by the sarcoplasmic reticulum Ca2+-ATPase during calcium transport in reconstitued proteo- liposomes with low ionic permeability. J Biol Chem 265: 19524–19534

    PubMed  CAS  Google Scholar 

  26. Li G, Pralong WF, Pittet D, Mayr GW, Schlegel W, Wollheim CB (1992) Inositol tetrakisphosphate isomers and elevation of cytosolic Ca2+ in vasopressin-stimulated insulin-secreting RINm5F cells. J Biol Chem 267:4349–4356

    PubMed  CAS  Google Scholar 

  27. Meissner G (1981) Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles. J Biol Chem 256:636–643

    PubMed  CAS  Google Scholar 

  28. Meldolesi J, Villa A, Volpe P, Pozzan T (1992) Cellular sites of IP3 action. Adv Second Messenger Phosphoprotein Res 26:187–208

    PubMed  CAS  Google Scholar 

  29. Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    PubMed  CAS  Google Scholar 

  30. Niggli V, Sigel E, Carafoli E (1982) The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+- H+ exchange in reconstituted liposomal systems. J Biol Chem 257:2350–2356

    PubMed  CAS  Google Scholar 

  31. Nilsson T, Arkhammar P, Hallberg A, Hellman B, Berggren PO (1987) Characterization of the inositol 1,4,5-trisphosphate- induced Ca2+ release in pancreatic β-cells. Biochem J 248: 329–336

    PubMed  CAS  Google Scholar 

  32. Orci L, Ravazzola R, Amherdt M, Madsen O, Perrelet A, Vassalli JD, Anderson RGW (1986) Conversion of proinsulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol 103:2273–2281

    Article  PubMed  CAS  Google Scholar 

  33. Petersen OH, Petersen CCH, Kasai H (1994) Calcium and hormone action. Annu Rev Physiol 56:297–319

    Article  PubMed  CAS  Google Scholar 

  34. Pozzan T, Rizutto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636

    PubMed  CAS  Google Scholar 

  35. Prentki M, Corkey BE, Matschinsky FM (1985) Inositol 1,4,5- trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line. J Biol Chem 260:9185–9190

    PubMed  CAS  Google Scholar 

  36. Pressman BC, Fahim M (1982) Pharmacology and toxicology of the monovalent carboxylic ionophores. Annu Rev Pharmacol Toxicol 22:465–490

    Article  PubMed  CAS  Google Scholar 

  37. Rodman JS, Stahl PD, Gluck S (1991) Distribution and structure of the vacuolar H+ ATPase in endosomes and lysosomes from LLC-PK, cells. Exp Cell Res 192:445–452

    Article  PubMed  CAS  Google Scholar 

  38. Rutter GA, Theler JM, Li G, Wollheim CB (1994) Ca2+ stores in insulin-secreting cells: lack of effect of cADP ribose. Cell Calcium 16:71–80

    Article  PubMed  CAS  Google Scholar 

  39. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald MJ, Wollheim CB, Rutter GA (1994) Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cells. Potential role in nutrient sensing. J Biol Chem 269: 4895–4902

    PubMed  CAS  Google Scholar 

  40. Takaki R, Ono J, Nakamura M, Yokogawa Y, Kumae S, Hiraoka T, Yamaguchi K, Hamaguchi K, Uchida S (1986) Isolation of glucagon-secreting cell lines by cloning insulinoma cells in vitro. In Vitro Cell Dev Biol 22:120–126

    Article  PubMed  CAS  Google Scholar 

  41. Takesawa S, Nata K, Yonekura H, Okamoto H (1993) Cyclic ADP-ribose in insulin secretion from pancreatic β cells. Science 259:370–373

    Article  Google Scholar 

  42. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promotor, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  PubMed  CAS  Google Scholar 

  43. Thévenod F, Schulz I (1988) H+-dependent calcium uptake into an IP3-sensitive calcium pool from rat parotid gland. Am J Physiol 255:G429-G440

    PubMed  Google Scholar 

  44. Thévenod F, Dehlinger-Kremer M, Kemmer TP, Christian AL, Potter BVL, Schulz I (1989) Characterization of inositol 1,4,5- trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) non- mitochondrial Ca2+ pools in rat pancreatic acinar cells. J Membr Biol 109:173–180

    Article  PubMed  Google Scholar 

  45. Yoo SH, Albanesi JP (1990) Inositol 1,4,5-trisphosphate-trig- gered Ca2+ release from bovine adrenal medullary secretory vesicles. J Biol Chem 265:13446–13448

    PubMed  CAS  Google Scholar 

  46. Yu X, Hao L, Inesi G (1994) A pK change of acidic residues contributes to cation countertransport in the Ca-ATPase of sarcoplasmic reticulum. Role of H+ in Ca2+-ATPase countertransport. J Biol Chem 269:16656–16661

    PubMed  CAS  Google Scholar 

  47. Zha X, Chandra S, Ridsdale AJ, Morrison GH (1995) Golgi apparatus is involved in intracelluar Ca2+ regulation in epithelial LLC-PK, cells. Am J Physiol 268:C1133-C1140

    PubMed  CAS  Google Scholar 

  48. Zimniack P, Racker E (1978) Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem 253:4631–4637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, HP., Himmen, A. & Göke, B. Evidence for vacuolar-type proton pumps in nonmitochondrial and inositol 1,4,5- trisphosphate-sensitive calcium stores of insulin-secreting cells. Pflügers Arch — Eur J Physiol 432, 97–104 (1996). https://doi.org/10.1007/s004240050110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050110

Key words

Navigation