Skip to main content
Log in

Calcium-sensing receptor (CaSR) modulates vacuolar H+-ATPase activity in a cell model of proximal tubule

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The calcium-sensing receptor (CaSR) is localized in the apical membrane of proximal tubules in close proximity to the transporters responsible for proton secretion. Therefore, the aim of the present study was to analyze the effects of CaSR stimulation on the biochemical activity of the vacuolar H+-ATPase in a cellular model of proximal tubule cells, OKP cells.

Methods

Biochemical activity of H+-ATPase was performed using cell homogenates, and the inorganic phosphate released was determined by a colorimetric method. Changes in cytosolic ionized calcium [Ca2+]i were also determined using Fluo-4.

Results

A significant increase of vacuolar H+-ATPase activity was observed when the CaSR was stimulated with agonists such as Gd3+ (300 µM) and neomycin (200 µM). This activity was also stimulated in a dose-dependent fashion by changes in extracellular Ca2+ (Ca2+o) between 10−4 and 2 mM. Gd3+ and neomycin produced a sustained rise of [Ca2+]i, an effect that disappears when extracellular calcium was removed in the presence of 0.1 µM thapsigargin. Inhibition of phospholipase C (PLC) activity with U73122 (5 × 10−8 M) reduced the increase in [Ca2+]i induced by neomycin.

Conclusion

CaSR stimulation induces an increase in the vacuolar H+-ATPase activity of OKP cells, an effect that involves an increase in [Ca2+]i and require phospholipase C activity. The consequent decrease in intratubular pH could lead to increase ionization of luminal calcium, potentially enhancing its reabsorption in distal tubule segments and reducing the formation of calcium phosphate stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alfadda TI, Saleh AM, Houillier P, Geibel JP. Calcium-sensing receptor 20 years later. Am J Physiol. 2014;307(3):C221–31.

    Article  CAS  Google Scholar 

  2. Riccardi D, Valenti G. Localization and function of the renal calcium-sensing receptor. Nat Rev Nephrol. 2016;12(7):414–25.

    Article  CAS  Google Scholar 

  3. Riccardi D, Kemp PJ. The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol. 2012;74:271–97.

    Article  CAS  Google Scholar 

  4. Riccardi D, Lee WS, Lee K, et al. Localization of the extracellular Ca(2+)-sensing receptor and PTH/PTHrP receptor in rat kidney. Am J Physiol. 1996;271(4 Pt 2):F951–6.

    CAS  PubMed  Google Scholar 

  5. Riccardi D, Hall AE, Chattopadhyhay N, et al. Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol. 1998;274(3 Pt 2):611–22.

    Google Scholar 

  6. Graca J, Schepelmann M, Brennan S, et al. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat and human kidney. Am J Physiol. 2016;310(6):F518–33.

    CAS  Google Scholar 

  7. Loupy A, Ramakrishnan SK, Wootla B, et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest. 2012;122(9):3355–67.

    Article  CAS  Google Scholar 

  8. Yasuoka Y, Sato Y, Healy JM, et al. pH-sensitive expression of calcium-sensing receptor (CaSR) in type-B intercalated cells of the cortical collecting ducts (CCD) in mouse kidney. Clin Exp Nephrol. 2015;19(5):771–82.

    Article  CAS  Google Scholar 

  9. Ba J, Brown D, Friedman PA. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am J Physiol. 2003;285(6):F1233–43.

    CAS  Google Scholar 

  10. Maiti A, Beckman MJ. Extracellular calcium is a direct effecter of VDR levels in proximal tubule epithelial cells that counter-balances effects of PTH on renal vitamin D metabolism. J Steroid Biochem Mol Biol. 2007;103(3–5):504–8.

    Article  CAS  Google Scholar 

  11. Capasso G, Geibel PJ, Damiano S, et al. The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int. 2013;84(2):277–84.

    Article  CAS  Google Scholar 

  12. Procino G, Carmosino M, Tamma G, et al. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66(6):2245–55.

    Article  CAS  Google Scholar 

  13. Renkema KY, Velic A, Dijkman HB, et al. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol. 2009;20(8):1705–13.

    Article  CAS  Google Scholar 

  14. Sands JM, Naruse M, Baum M, et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest. 1997;99(6):1399–405.

    Article  CAS  Google Scholar 

  15. Casare F, Milan D, Fernandez R. Stimulation of calcium-sensing receptor increases biochemical H+-ATPase activity in mouse cortex and outer medullary regions. Can J Physiol Pharmacol. 2014;92(3):181–8.

    Article  CAS  Google Scholar 

  16. Cole JA, Forte LR, Krause WJ, Thorne PK. Clonal sublines that are morphologically and functionally distinct from parental OK cells. Am J Physiol. 1989;256(4 Pt 2):F672–9.

    CAS  PubMed  Google Scholar 

  17. Dos Santos PMC, Freitas FP, Mendes J, Tararthuch AL, Fernandez R. Modulation of proton ATPase activity in MDCK-C11 cells. Can J Physiol Pharmacol. 2009;87(9):653–65.

    Article  CAS  Google Scholar 

  18. Chang W, Shoback D. Extracellular Ca2+-sensing receptors—an overview. Cell Calcium. 2004;35(3):183–96.

    Article  CAS  Google Scholar 

  19. Ward DT. Calcium receptor-mediated intracellular signalling. Cell Calcium. 2004;35(3):217–28.

    Article  CAS  Google Scholar 

  20. Di Mise A, Tamma G, Ranieri M, et al. Conditionally immortalized human proximal tubular epithelial cells isolated from the urine of a healthy subject express functional calcium-sensing receptor. Am J Physiol. 2015;308(11):F1200–6.

    Google Scholar 

  21. Wagner CA, Finberg KE, Breton S, et al. Renal vacuolar H+-ATPase. Physiol Rev. 2004;84(4):1263–314.

    Article  CAS  Google Scholar 

  22. Brown EM, Watson EJ, Leombruno R, Underwood RH. Extracellular calcium is not necessary for acute, low calcium- or dopamine-stimulated PTH secretion in dispersed bovine parathyroid cells. Metabolism. 1983;32(11):1038–44.

    Article  CAS  Google Scholar 

  23. Fernandez R, Giebisch G, Geibel JP. Intracellular Ca2+ modulates H+ ATPase activity in intercalated cells from mouse cortical collecting duct (CCD). Faseb J. 2005;19(4):139. (Abstract Meeting).

    Google Scholar 

  24. Zhang C, Miller CL, Gorkhali R, et al. Molecular basis of the extracellular ligands mediated signaling by the calcium sensing receptor. Front Physiol. 2016;7:441.

    PubMed  PubMed Central  Google Scholar 

  25. Quinn SJ, Conigrave AD. Alternative agonists and modulators: evidence that the calcium-sensing receptor is a multi-modal sensor. Calcium Sens Recept. 2003;19:203–26.

    Article  CAS  Google Scholar 

  26. Farajov EL, Morimoto T, Aslanova UF, et al. Calcium-sensing receptor stimulates luminal K+-dependent H+ excretion in medullary thick ascending limbs of Henle’s loop of mouse kidney. Tohoku J Exp Med. 2008;216(1):7–15.

    Article  CAS  Google Scholar 

  27. Colella M, Gerbino A, Hofer AM, Curci S. Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res. 2016; 5(F1000 Faculty Rev):2535. https://doi.org/10.12688/f1000research.8963.1

    Article  CAS  Google Scholar 

  28. Ward DT, McLarnon SJ, Riccardi D. Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J Am Soc Nephrol. 2002;13(6):1481–9.

    Article  CAS  Google Scholar 

  29. Hays SR, Alpern RJ. Inhibition of Na(+)-independent H+ pump by Na(+)-induced changes in cell Ca2+. J Gen Physiol. 1991;98(4):791–813.

    Article  CAS  Google Scholar 

  30. Van de Graaf SF, Bindels RJ, Hoenderop JG. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol. 2007;158:77–160.

    Article  Google Scholar 

  31. Tiselius HG. A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res. 2011;39(4):231–43.

    Article  Google Scholar 

  32. Wagner CA, Mohebbi N. Urinary pH and stone formation. J Nephrol. 2010;23(16):165–9.

    Google Scholar 

  33. Wang W, Praetorius J, Li C, et al. Vacuolar H+-ATPase expression is increased in acid-secreting intercalated cells in kidneys of rats with hypercalcaemia-induced alkalosis. Acta Physiol (Oxf). 2007;189(4):359–68.

    Article  CAS  Google Scholar 

  34. Vezzoli G, Terranegra A, Rainone F, et al. Calcium-sensing receptor and calcium kidney stones. J Transl Med. 2011;9:201.

    Article  CAS  Google Scholar 

  35. Vezzoli G, Terranegra A, Aloia A, et al. Decreased transcriptional activity of calcium-sensing receptor gene promoter 1 is associated with calcium nephrolithiasis. J Clin Endocrinol Metab. 2013;98(9):3839–47.

    Article  CAS  Google Scholar 

  36. Bergsland KJ, Coe FL, Gillen DL, Worcester EM. A test of the hypothesis that the collecting duct calcium-sensing receptor limits rise of urine calcium molarity in hypercalciuric calcium kidney stone formers. Am J Physiol. 2009;297(4):F1017–23.

    CAS  Google Scholar 

Download references

Acknowledgements

P. M. C. Dos Santos was supported by a grant of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brasil. The authors acknowledge the Confocal and Conventional Fluorescence Microscopy Multi-user Laboratory at UFPR for technical support. This laboratory is supported by FINEP, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Fernandez.

Ethics declarations

Conflict of interest

All the authors have declared no competing interest.

Research involving human participants and animals

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of article, informed consent is not required.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dos Santos, P.M.C., Amaral, D., Tararthuch, A.L. et al. Calcium-sensing receptor (CaSR) modulates vacuolar H+-ATPase activity in a cell model of proximal tubule. Clin Exp Nephrol 22, 1258–1265 (2018). https://doi.org/10.1007/s10157-018-1613-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-018-1613-z

Keywords

Navigation