Skip to main content

Advertisement

Log in

The T-type calcium channelosome

  • Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ANKB:

Ankyrin B

CACHD1:

Ca2+ channel and chemotaxis receptor (cache) domain-containing protein 1

CaM:

Calmodulin

CAV-3:

Caveolin-3

CNX:

Calnexin

ENaC:

Epithelial sodium channel

KLHL1:

Kelch-like protein 1

RACK1:

Receptor for activated C kinase 1

SCAMP2:

Secretory carrier-associated membrane protein 2

SCAMP5:

Secretory carrier-associated membrane protein 2

SPTA/B:

Spectrin A/B

STAC1:

SH3 and cysteine-rich domain-containing protein 1

STX1A:

Syntaxin 1A

USP5:

Ubiquitin specific peptidase 1

WWP1/2:

WW domain-containing E3 ubiquitin protein ligase 1/2

References

  1. Abd El-Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG (2013) Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol 304:H58–H71. https://doi.org/10.1152/ajpheart.00476.2012

    Article  CAS  PubMed  Google Scholar 

  2. Adams DR, Ron D, Kiely PA (2011) RACK1, A multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22. https://doi.org/10.1186/1478-811X-9-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alaklabi AM, Gambeta E, Zamponi GW (2023) Electrophysiological characterization of a CaV3.1 calcium channel mutation linked to trigeminal neuralgia. Pflugers Arch 475:711–718. https://doi.org/10.1007/s00424-023-02808-w

    Article  CAS  PubMed  Google Scholar 

  4. Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13:333–337. https://doi.org/10.1038/nn.2493

    Article  CAS  PubMed  Google Scholar 

  5. Anderson D, Rehak R, Hameed S, Mehaffey WH, Zamponi GW, Turner RW (2010) Regulation of the KV4.2 complex by CaV3.1 calcium channels. Channels (Austin) 4:163–167. https://doi.org/10.4161/chan.4.3.11955

    Article  CAS  PubMed  Google Scholar 

  6. Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JQ (2016) A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Sci Rep 6:34233. https://doi.org/10.1038/srep34233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES (2009) Kelch-like 1 protein upregulates T-type currents by an actin-F dependent increase in α(1H) channels via the recycling endosome. Channels (Austin) 3:402–412. https://doi.org/10.4161/chan.3.6.9858

    Article  CAS  PubMed  Google Scholar 

  8. Aromolaran KA, Benzow KA, Cribbs LL, Koob MD, Piedras-Rentería ES (2010) T-type current modulation by the actin-binding protein Kelch-like 1. Am J Physiol Cell Physiol 298:C1353–C1362. https://doi.org/10.1152/ajpcell.00235.2009

    Article  CAS  PubMed  Google Scholar 

  9. Aromolaran KA, Benzow KA, Koob MD, Piedras-Rentería ES (2007) The Kelch-like protein 1 modulates P/Q-type calcium current density. Neuroscience 145:841–850. https://doi.org/10.1016/j.neuroscience.2006.12.046

    Article  CAS  PubMed  Google Scholar 

  10. Arteaga-Tlecuitl R, Sanchez-Sandoval AL, Ramirez-Cordero BE, Rosendo-Pineda MJ, Vaca L, Gomora JC (2018) Increase of CaV3 channel activity induced by HVA β1b-subunit is not mediated by a physical interaction. BMC Res Notes 11. https://doi.org/10.1186/s13104-018-3917-1

  11. Asmara H, Micu I, Rizwan AP, Sahu G, Simms BA, Zhang FX, Engbers JDT, Stys PK, Zamponi GW, Turner RW (2017) A T-type channel-calmodulin complex triggers αCaMKII activation. Mol Brain 10:37. https://doi.org/10.1186/s13041-017-0317-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108:13823–13828. https://doi.org/10.1073/pnas.1105115108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bae J, Suh EJ, Lee C (2010) Interaction of T-type calcium channel Ca(V)3.3 with the β-subunit. Mol Cells 30:185–191. https://doi.org/10.1007/s10059-010-0106-z

    Article  CAS  PubMed  Google Scholar 

  14. Baez-Nieto D, Allen A, Akers-Campbell S, Yang L, Budnik N, Pupo A, Shin Y-C, Genovese G, Liao M, Pérez-Palma E, Heyne H, Lal D, Lipscombe D, Pan JQ (2022) Analysing an allelic series of rare missense variants of CACNA1I in a Swedish schizophrenia cohort. Brain 145:1839–1853. https://doi.org/10.1093/brain/awab443

    Article  PubMed  Google Scholar 

  15. Barghouth M, Ye Y, Karagiannopoulos A, Ma Y, Cowan E, Wu R, Eliasson L, Renström E, Luan C, Zhang E (2022) The T-type calcium channel CaV3.2 regulates insulin secretion in the pancreatic β-cell. Cell Calcium 108:102669. https://doi.org/10.1016/j.ceca.2022.102669

    Article  CAS  PubMed  Google Scholar 

  16. Barrett PQ, Lu HK, Colbran R, Czernik A, Pancrazio JJ (2000) Stimulation of unitary T-type Ca(2+) channel currents by calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 279:C1694–C1703. https://doi.org/10.1152/ajpcell.2000.279.6.C1694

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Johny M, Dick IE, Sang L, Limpitikul WB, Kang PW, Niu J, Banerjee R, Yang W, Babich JS, Issa JB, Lee SR, Namkung H, Li J, Zhang M, Yang PS, Bazzazi H, Adams PJ, Joshi-Mukherjee R, Yue DN, Yue DT (2015) Towards a unified theory of calmodulin regulation (calmodulation) of voltage-gated calcium and sodium channels. Curr Mol Pharmacol 8:188–205. https://doi.org/10.2174/1874467208666150507110359

    Article  CAS  PubMed  Google Scholar 

  18. Ben-Johny M, Yue DT (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J Gen Physiol 143:679–692. https://doi.org/10.1085/jgp.201311153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ben-Johny M, Dick IE (2022) In Voltage-gated calcium channels Eds. Springer, pp 217–236

    Book  Google Scholar 

  20. Bender KJ, Trussell LO (2009) Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 61:259–271. https://doi.org/10.1016/j.neuron.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berthier C, Monteil A, Lory P, Strube C (2002) Alpha(1H) mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice. J Physiol 539:681–691. https://doi.org/10.1113/jphysiol.2001.013246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci USA 97:7627–7632. https://doi.org/10.1073/pnas.97.13.7627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blesneac I, Chemin J, Bidaud I, Huc-Brandt S, Vandermoere F, Lory P (2015) Phosphorylation of the Cav3.2 T-type calcium channel directly regulates its gating properties. Proc Natl Acad Sci USA 112:13705–13710. https://doi.org/10.1073/pnas.1511740112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bryant S, Kimura TE, Kong CH, Watson JJ, Chase A, Suleiman MS, James AF, Orchard CH (2014) Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes. J Mol Cell Cardiol 68:47–55. https://doi.org/10.1016/j.yjmcc.2013.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai S, Gomez K, Moutal A, Khanna R (2021) Targeting T-type/CaV3.2 channels for chronic pain. Transl Res 234:20–30. https://doi.org/10.1016/j.trsl.2021.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Campiglio M, Costé de Bagneaux P, Ortner NJ, Tuluc P, Van Petegem F, Flucher BE (2018) STAC proteins associate to the IQ domain of CaV1.2 and inhibit calcium-dependent inactivation. Proc Natl Acad Sci USA 115:1376–1381. https://doi.org/10.1073/pnas.1715997115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carabelli V, Marcantoni A, Comunanza V, Carbone E (2007) Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. Eur Biophys J 36:753–762. https://doi.org/10.1007/s00249-007-0138-2

    Article  CAS  PubMed  Google Scholar 

  28. Carabelli V, Marcantoni A, Comunanza V, de Luca A, Díaz J, Borges R, Carbone E (2007) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165. https://doi.org/10.1113/jphysiol.2007.132274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carbone E, Calorio C, Vandael DH (2014) T-type channel-mediated neurotransmitter release. Pflugers Arch 466:677–687. https://doi.org/10.1007/s00424-014-1489-z

    Article  CAS  PubMed  Google Scholar 

  30. Carter MT, McMillan HJ, Tomin A, Weiss N (2019) Compound heterozygous CACNA1H mutations associated with severe congenital amyotrophy. Channels (Austin) 13:153–161. https://doi.org/10.1080/19336950.2019.1614415

    Article  PubMed  Google Scholar 

  31. Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J (2014) 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflügers Archiv - Eur J Physiol 466:1759–1768. https://doi.org/10.1007/s00424-013-1411-0

    Article  CAS  Google Scholar 

  32. Chemin J, Siquier-Pernet K, Nicouleau M, Barcia G, Ahmad A, Medina-Cano D, Hanein S, Altin N, Hubert L, Bole-Feysot C, Fourage C, Nitschké P, Thevenon J, Rio M, Blanc P, Vidal C, Bahi-Buisson N, Desguerre I, Munnich A et al (2018) De novo mutation screening in childhood-onset cerebellar atrophy identifies gain-of-function mutations in the CACNA1G calcium channel gene. Brain 141:1998–2013. https://doi.org/10.1093/brain/awy145

    Article  PubMed  Google Scholar 

  33. Chemin J, Taiakina V, Monteil A, Piazza M, Guan W, Stephens RF, Kitmitto A, Pang ZP, Dolphin AC, Perez-Reyes E, Dieckmann T, Guillemette JG, Spafford JD (2017) Calmodulin regulates Cav3 T-type channels at their gating brake. J Biol Chem 292:20010–20031. https://doi.org/10.1074/jbc.M117.807925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416–1418. https://doi.org/10.1126/science.1089268

    Article  CAS  PubMed  Google Scholar 

  35. Choi CSW, Souza IA, Sanchez-Arias JC, Zamponi GW, Arbour LT, Swayne LA (2019) Ankyrin B and Ankyrin B variants differentially modulate intracellular and surface Cav2.1 levels. Mol. Brain 12:75. https://doi.org/10.1186/s13041-019-0494-8

    Article  CAS  Google Scholar 

  36. Choi S, Na HS, Kim J, Lee J, Lee S, Kim D, Park J, Chen CC, Campbell KP, Shin HS (2007) Attenuated pain responses in mice lacking Ca(V)3.2 T-type channels. Genes Brain Behav 6:425–431. https://doi.org/10.1111/j.1601-183X.2006.00268.x

    Article  CAS  PubMed  Google Scholar 

  37. Cmarko L, Stringer RN, Jurkovicova-Tarabova B, Vacik T, Lacinova L, Weiss N (2022) Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels. Mol Brain 15:1. https://doi.org/10.1186/s13041-021-00891-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cottrell GS, Soubrane CH, Hounshell JA, Lin H, Owenson V, Rigby M, Cox PJ, Barker BS, Ottolini M, Ince S, Bauer CC, Perez-Reyes E, Patel MK, Stevens EB, Stephens GJ (2018) CACHD1 is an α2δ-like protein that modulates CaV3 voltage-gated calcium channel activity. J Neurosci 38:9186–9201. https://doi.org/10.1523/JNEUROSCI.3572-15.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G (2015) A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia. Am J Hum Genet 97:726–737. https://doi.org/10.1016/j.ajhg.2015.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crandall SR, Govindaiah G, Cox CL (2010) Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci 30:15419–15429. https://doi.org/10.1523/JNEUROSCI.3636-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83:103–109. https://doi.org/10.1161/01.res.83.1.103

    Article  CAS  PubMed  Google Scholar 

  42. Cueni L, Canepari M, Luján R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Lüthi A (2008) T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11:683–692. https://doi.org/10.1038/nn.2124

    Article  CAS  PubMed  Google Scholar 

  43. Cunha SR, Hund TJ, Hashemi S, Voigt N, Li N, Wright P, Koval O, Li J, Gudmundsson H, Gumina RJ, Karck M, Schott JJ, Probst V, Le Marec H, Anderson ME, Dobrev D, Wehrens XH, Mohler PJ (2011) Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation. Circulation 124:1212–1222. https://doi.org/10.1161/CIRCULATIONAHA.111.023986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dahimene S, Page KM, Kadurin I, Ferron L, Ho DY, Powell GT, Pratt WS, Wilson SW, Dolphin AC (2018) The α2δ-like protein Cachd1 increases N-type calcium currents and cell surface expression and competes with α2δ-1. Cell Rep 25:1610–1621.e5. https://doi.org/10.1016/j.celrep.2018.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daniil G, Fernandes-Rosa FL, Chemin J, Blesneac I, Beltrand J, Polak M, Jeunemaitre X, Boulkroun S, Amar L, Strom TM, Lory P, Zennaro MC (2016) CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine 13:225–236. https://doi.org/10.1016/j.ebiom.2016.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  46. De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP (1997) Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 385:446–450. https://doi.org/10.1038/385446a0

    Article  PubMed  Google Scholar 

  47. DePuy SD, Yao J, Hu C, McIntire W, Bidaud I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ (2006) The molecular basis for T-type Ca2+ channel inhibition by G protein beta2gamma2 subunits. Proc Natl Acad Sci USA 103:14590–14595. https://doi.org/10.1073/pnas.0603945103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diering GH, Church J, Numata M (2009) Secretory carrier membrane protein 2 regulates cell-surface targeting of brain-enriched Na+/H+ exchanger NHE5. J Biol Chem 284:13892–13903. https://doi.org/10.1074/jbc.M807055200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dubel SJ, Altier C, Chaumont S, Lory P, Bourinet E, Nargeot J (2004) Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits. J Biol Chem 279:29263–29269. https://doi.org/10.1074/jbc.M313450200

    Article  CAS  PubMed  Google Scholar 

  50. Engbers JD, Anderson D, Asmara H, Rehak R, Mehaffey WH, Hameed S, McKay BE, Kruskic M, Zamponi GW, Turner RW (2012) Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci USA 109:2601–2606. https://doi.org/10.1073/pnas.1115024109

    Article  PubMed  PubMed Central  Google Scholar 

  51. Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753–763. https://doi.org/10.1002/jcp.21075

    Article  CAS  PubMed  Google Scholar 

  52. Felix R, Weiss N (2017) Ubiquitination and proteasome-mediated degradation of voltage-gated Ca2+ channels and potential pathophysiological implications. Gen Physiol Biophys 36:1–5. https://doi.org/10.4149/gpb_2016037

    Article  CAS  PubMed  Google Scholar 

  53. Feseha S, Timic Stamenic T, Wallace D, Tamag C, Yang L, Pan JQ, Todorovic SM (2020) Global genetic deletion of CaV3.3 channels facilitates anaesthetic induction and enhances isoflurane-sparing effects of T-type calcium channel blockers. Sci Rep 10:21510. https://doi.org/10.1038/s41598-020-78488-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ficelova V, Souza IA, Cmarko L, Gandini MA, Stringer RN, Zamponi GW, Weiss N (2020) Functional identification of potential non-canonical N-glycosylation sites within Cav3.2 T-type calcium channels. Mol Brain 13:149. https://doi.org/10.1186/s13041-020-00697-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fjorback AW, Müller HK, Haase J, Raarup MK, Wiborg O (2011) Modulation of the dopamine transporter by interaction with secretory carrier membrane protein 2. Biochem Biophys Res Commun 406:165–170. https://doi.org/10.1016/j.bbrc.2011.01.069

    Article  CAS  PubMed  Google Scholar 

  56. Flucher BE, Campiglio M (2019) STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. Biochim Biophys Acta Mol Cell Res 1866:1101–1110. https://doi.org/10.1016/j.bbamcr.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  57. Gackière F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biology Open 2:941–951. https://doi.org/10.1242/bio.20135215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gadotti VM, Caballero AG, Berger ND, Gladding CM, Chen L, Pfeifer TA, Zamponi GW (2015) Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain. Mol Pain 11:12. https://doi.org/10.1186/s12990-015-0011-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gaifullina AS, Lazniewska J, Gerasimova EV, Burkhanova GF, Rzhepetskyy Y, Tomin A, Rivas-Ramirez P, Huang J, Cmarko L, Zamponi GW, Sitdikova GF, Weiss N (2019) A potential role for T-type calcium channels in homocysteinemia-induced peripheral neuropathy. Pain 160:2798–2810. https://doi.org/10.1097/j.pain.0000000000001669

    Article  CAS  PubMed  Google Scholar 

  60. Gambeta E, Gandini MA, Souza IA, Zamponi GW (2022) CaV3.2 calcium channels contribute to trigeminal neuralgia. Pain. https://doi.org/10.1097/j.pain.0000000000002651

  61. Gandini MA, Souza IA, Khullar A, Gambeta E, Zamponi GW (2021) Regulation of CaV3.2 channels by the receptor for activated C kinase 1 (Rack-1). Pflugers Arch. https://doi.org/10.1007/s00424-021-02631-1

  62. Gangarossa G, Laffray S, Bourinet E, Valjent E (2014) T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Front Behav Neurosci 8:92. https://doi.org/10.3389/fnbeh.2014.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garcia-Caballero A, Gadotti VM, Ali MY, Bladen C, Gambeta E, Van Humbeck JF, MacCallum JL, Zamponi GW (2022) A synthetically accessible small-molecule inhibitor of USP5-Cav3.2 calcium channel interactions with analgesic properties. ACS Chem Neurosci 13:524–536. https://doi.org/10.1021/acschemneuro.1c00765

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Caballero A, Gadotti VM, Chen L, Zamponi GW (2016) A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Mol Pain 12:1744806916642444. https://doi.org/10.1177/1744806916642444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. García-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, Deage M, François A, Bourinet E, Zamponi GW (2014) The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 83:1144–1158. https://doi.org/10.1016/j.neuron.2014.07.036

    Article  CAS  PubMed  Google Scholar 

  66. Garcia-Caballero A, Gandini MA, Huang S, Chen L, Souza IA, Dang YL, Stutts MJ, Zamponi GW (2019) Cav3.2 calcium channel interactions with the epithelial sodium channel ENaC. Mol Brain 12:12. https://doi.org/10.1186/s13041-019-0433-8

    Article  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Caballero A, Zhang FX, Chen L, M’Dahoma S, Huang J, Zamponi GW (2019) SUMOylation regulates USP5-Cav3.2 calcium channel interactions. Mol Brain 12:73. https://doi.org/10.1186/s13041-019-0493-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW (2018) T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 11:24. https://doi.org/10.1186/s13041-018-0368-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giraldez T, Domínguez J, Alvarez de la Rosa D (2013) ENaC in the brain--future perspectives and pharmacological implications. Curr Mol Pharmacol 6:44–49. https://doi.org/10.2174/1874467211306010006

    Article  CAS  PubMed  Google Scholar 

  70. He L, Yu Z, Geng Z, Huang Z, Zhang C, Dong Y, Gao Y, Wang Y, Chen Q, Sun L, Ma X, Huang B, Wang X, Zhao Y (2022) Structure, gating, and pharmacology of human CaV3.3 channel. Nat Commun 13. https://doi.org/10.1038/s41467-022-29728-0

  71. He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD (2006) Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 26:9975–9982. https://doi.org/10.1523/JNEUROSCI.2595-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62:560–568. https://doi.org/10.1002/ana.21169

    Article  CAS  PubMed  Google Scholar 

  73. Ho TS, Zollinger DR, Chang KJ, Xu M, Cooper EC, Stankewich MC, Bennett V, Rasband MN (2014) A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat Neurosci 17:1664–1672. https://doi.org/10.1038/nn.3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu C, Depuy SD, Yao J, McIntire WE, Barrett PQ (2009) Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimers. J Biol Chem 284:7465–7473. https://doi.org/10.1074/jbc.M808049200

    Article  PubMed  PubMed Central  Google Scholar 

  75. Huang J, Zamponi GW (2017) Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Curr Opin Pharmacol 32:1–8. https://doi.org/10.1016/j.coph.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  76. Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D (2000) The secretory carrier membrane protein family: structure and membrane topology. Mol Biol Cell 11:2933–2947. https://doi.org/10.1091/mbc.11.9.2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hughes SW, Cope DW, Blethyn KL, Crunelli V (2002) Cellular mechanisms of the slow (<1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33:947–958. https://doi.org/10.1016/s0896-6273(02)00623-2

    Article  CAS  PubMed  Google Scholar 

  78. Isacson CK, Lu Q, Karas RH, Cox DH (2007) RACK1 is a BKCa channel binding protein. Am J Physiol Cell Physiol 292:C1459–C1466. https://doi.org/10.1152/ajpcell.00322.2006

    Article  CAS  PubMed  Google Scholar 

  79. Ivanov AI, Calabrese RL (2000) Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J Neurosci 20:4930–4943. https://doi.org/10.1523/JNEUROSCI.20-13-04930.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jeong S, Shim JS, Sin SK, Park K, Lee J (2023) Phosphorylation states greatly regulate the activity and gating properties of Cav3.1 T-type Ca2+ channels. J Cell Physiol 238:210–226. https://doi.org/10.1002/jcp.30920

    Article  CAS  PubMed  Google Scholar 

  81. Jiang S, Seng S, Avraham HK, Fu Y, Avraham S (2007) Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem 282:12319–12329. https://doi.org/10.1074/jbc.M701019200

    Article  CAS  PubMed  Google Scholar 

  82. Khosravani H, Altier C, Simms B, Hamming KS, Snutch TP, Mezeyova J, McRory JE, Zamponi GW (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279:9681–9684. https://doi.org/10.1074/jbc.C400006200

    Article  CAS  PubMed  Google Scholar 

  83. Khosravani H, Bladen C, Parker DB, Snutch TP, McRory JE, Zamponi GW (2005) Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Ann Neurol 57:745–749. https://doi.org/10.1002/ana.20458

    Article  CAS  PubMed  Google Scholar 

  84. Kim D, Park D, Choi S, Lee S, Sun M, Kim C, Shin HS (2003) Thalamic control of visceral nociception mediated by T-type Ca2+ channels. Science 302:117–119. https://doi.org/10.1126/science.1088886

    Article  CAS  PubMed  Google Scholar 

  85. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31:35–45. https://doi.org/10.1016/s0896-6273(01)00343-9

    Article  CAS  PubMed  Google Scholar 

  86. Kline CF, Scott J, Curran J, Hund TJ, Mohler PJ (2014) Ankyrin-B regulates Cav2.1 and Cav2.2 channel expression and targeting. J Biol Chem 289:5285–5295. https://doi.org/10.1074/jbc.M113.523639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Komada M, Soriano P (2002) [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 156:337–348. https://doi.org/10.1083/jcb.200110003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kozlov G, Gehring K (2020) Calnexin cycle - structural features of the ER chaperone system. FEBS J 287:4322–4340. https://doi.org/10.1111/febs.15330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lacinova L, Weiss N (2016) It takes two T to shape immunity: emerging role for T-type calcium channels in immune cells. Gen Physiol Biophys 35:393–396. https://doi.org/10.4149/gpb_2016034

    Article  CAS  PubMed  Google Scholar 

  90. Lazniewska J, Weiss N (2014) The “sweet” side of ion channels. Rev Physiol Biochem Pharmacol 167:67–114. https://doi.org/10.1007/112_2014_20

    Article  CAS  PubMed  Google Scholar 

  91. Lazniewska J, Weiss N (2017) Glycosylation of voltage-gated calcium channels in health and disease. Biochim Biophys Acta Biomembr 1859:662–668. https://doi.org/10.1016/j.bbamem.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  92. Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klöckner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee U, Choi C, Ryu SH, Park D, Lee SE, Kim K, Kim Y, Chang S (2021) SCAMP5 plays a critical role in axonal trafficking and synaptic localization of NHE6 to adjust quantal size at glutamatergic synapses. Proc Natl Acad Sci USA 118:e2011371118. https://doi.org/10.1073/pnas.2011371118

    Article  CAS  PubMed  Google Scholar 

  94. Legha W, Gaillard S, Gascon E, Malapert P, Hocine M, Alonso S, Moqrich A (2010) stac1 and stac2 genes define discrete and distinct subsets of dorsal root ganglia neurons. Gene Expr Patterns 10:368–375. https://doi.org/10.1016/j.gep.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  95. Leuranguer V, Bourinet E, Lory P, Nargeot J (1998) Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology 37:701–708. https://doi.org/10.1016/s0028-3908(98)00060-4

    Article  CAS  PubMed  Google Scholar 

  96. Lin SS, Tzeng BH, Lee KR, Smith RJ, Campbell KP, Chen CC (2014) Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proc Natl Acad Sci USA 111:E1990–E1998. https://doi.org/10.1073/pnas.1323112111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu CH, Seo R, Ho TS, Stankewich M, Mohler PJ, Hund TJ, Noebels JL, Rasband MN (2020) β spectrin-dependent and domain specific mechanisms for Na+ channel clustering. Elife 9:e56629. https://doi.org/10.7554/eLife.56629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu CH, Stevens SR, Teliska LH, Stankewich M, Mohler PJ, Hund TJ, Rasband MN (2020) Nodal β spectrins are required to maintain Na+ channel clustering and axon integrity. Elife 9:e52378. https://doi.org/10.7554/eLife.52378

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lledo PM, Homburger V, Bockaert J, Vincent JD (1992) Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 8:455–463. https://doi.org/10.1016/0896-6273(92)90273-g

    Article  CAS  PubMed  Google Scholar 

  100. Lledo PM, Legendre P, Israel JM, Vincent JD (1990) Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 127:990–1001. https://doi.org/10.1210/endo-127-3-990

    Article  CAS  PubMed  Google Scholar 

  101. Lory P, Nicole S, Monteil A (2020) Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 472:831–844. https://doi.org/10.1007/s00424-020-02429-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lu HK, Fern RJ, Nee JJ, Barrett PQ (1994) Ca(2+)-dependent activation of T-type Ca2+ channels by calmodulin-dependent protein kinase II. Am J Physiol 267:F183–F189. https://doi.org/10.1152/ajprenal.1994.267.1.F183

    Article  CAS  PubMed  Google Scholar 

  103. Lundt A, Seidel R, Soós J, Henseler C, Müller R, Bakki M, Arshaad MI, Ehninger D, Hescheler J, Sachinidis A, Broich K, Wormuth C, Papazoglou A, Weiergräber M (2019) Cav3.2 T-type calcium channels are physiologically mandatory for the auditory system. Neuroscience 409:81–100. https://doi.org/10.1016/j.neuroscience.2019.04.024

    Article  CAS  PubMed  Google Scholar 

  104. Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Bogusławska DM, Grochowalska R, Heger E, Sikorski AF (2014) Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta 1838:620–634. https://doi.org/10.1016/j.bbamem.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  105. Mahapatra S, Calorio C, Vandael DH, Marcantoni A, Carabelli V, Carbone E (2012) Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 51:321–330. https://doi.org/10.1016/j.ceca.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  106. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 98:1422–1430. https://doi.org/10.1161/01.RES.0000225862.14314.49

    Article  CAS  PubMed  Google Scholar 

  107. Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 406:104–111. https://doi.org/10.1007/BF00586670

    Article  CAS  PubMed  Google Scholar 

  108. Markandeya YS, Fahey JM, Pluteanu F, Cribbs LL, Balijepalli RC (2011) Caveolin-3 regulates protein kinase A modulation of the Ca(V)3.2 (alpha1H) T-type Ca2+ channels. J Biol Chem 286:2433–2444. https://doi.org/10.1074/jbc.M110.182550

    Article  CAS  PubMed  Google Scholar 

  109. Mesirca P, Torrente AG, Mangoni ME (2014) T-type channels in the sino-atrial and atrioventricular pacemaker mechanism. Pflugers Arch 466:791–799. https://doi.org/10.1007/s00424-014-1482-6

    Article  CAS  PubMed  Google Scholar 

  110. Mezghrani A, Monteil A, Watschinger K, Sinnegger-Brauns MJ, Barrère C, Bourinet E, Nargeot J, Striessnig J, Lory P (2008) A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J Neurosci 28:4501–4511. https://doi.org/10.1523/jneurosci.2844-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Monteil A, Chausson P, Boutourlinsky K, Mezghrani A, Huc-Brandt S, Blesneac I, Bidaud I, Lemmers C, Leresche N, Lambert RC, Lory P (2015) Inhibition of Cav3.2 T-type calcium channels by its intracellular I-II loop. J Biol Chem 290:16168–16176. https://doi.org/10.1074/jbc.m114.634261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H (2015) A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 8:89. https://doi.org/10.1186/s13041-015-0180-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Müller CS, Haupt A, Bildl W, Schindler J, Knaus H-G, Meissner M, Rammner B, Striessnig J, Flockerzi V, Fakler B, Schulte U (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci 107:14950–14957. https://doi.org/10.1073/pnas.1005940107

    Article  PubMed  PubMed Central  Google Scholar 

  114. Müller HK, Wiborg O, Haase J (2006) Subcellular redistribution of the serotonin transporter by secretory carrier membrane protein 2. J Biol Chem 281:28901–28909. https://doi.org/10.1074/jbc.M602848200

    Article  CAS  PubMed  Google Scholar 

  115. Mustafá ER, Gambeta E, Stringer RN, Souza IA, Zamponi GW, Weiss N (2022) Electrophysiological and computational analysis of Cav3.2 channel variants associated with familial trigeminal neuralgia. Mol. Brain 15:91. https://doi.org/10.1186/s13041-022-00978-9

    Article  CAS  Google Scholar 

  116. Mustafá ER, Weiß K, Weiss N (2023) Secretory carrier-associated membrane protein 5 regulates cell-surface targeting of T-type calcium channels. Channels (Austin) 17:2230776. https://doi.org/10.1080/19336950.2023.2230776

    Article  PubMed  Google Scholar 

  117. Nelson BR, Wu F, Liu Y, Anderson DM, McAnally J, Lin W, Cannon SC, Bassel-Duby R, Olson EN (2013) Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci USA 110:11881–11886. https://doi.org/10.1073/pnas.1310571110

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD (2000) The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 9:1543–1551. https://doi.org/10.1093/hmg/9.10.1543

    Article  CAS  PubMed  Google Scholar 

  119. Orestes P, Osuru HP, McIntire WE, Jacus MO, Salajegheh R, Jagodic MM, Choe W, Lee J, Lee SS, Rose KE, Poiro N, Digruccio MR, Krishnan K, Covey DF, Lee JH, Barrett PQ, Jevtovic-Todorovic V, Todorovic SM (2013) Reversal of neuropathic pain in diabetes by targeting glycosylation of Ca(V)3.2 T-type calcium channels. Diabetes 62:3828–3838. https://doi.org/10.2337/db13-0813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98. https://doi.org/10.1016/s0896-6273(01)00454-8

    Article  CAS  PubMed  Google Scholar 

  121. Patterson RL, van Rossum DB, Barrow RK, Snyder SH (2004) RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci USA 101:2328–2332. https://doi.org/10.1073/pnas.0308567100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pellegrini C, Lecci S, Lüthi A, Astori S (2016) Suppression of sleep spindle rhythmogenesis in mice with deletion of CaV3.2 and CaV3.3 T-type Ca(2+) channels. Sleep 39:875–885. https://doi.org/10.5665/sleep.5646

    Article  PubMed  PubMed Central  Google Scholar 

  123. Peloquin JB, Khosravani H, Barr W, Bladen C, Evans R, Mezeyova J, Parker D, Snutch TP, McRory JE, Zamponi GW (2006) Functional analysis of Ca3.2 T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia 47:655–658. https://doi.org/10.1111/j.1528-1167.2006.00482.x

    Article  PubMed  Google Scholar 

  124. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900. https://doi.org/10.1038/36110

    Article  CAS  PubMed  Google Scholar 

  125. Perissinotti PP, Ethington EA, Almazan E, Martínez-Hernández E, Kalil J, Koob MD, Piedras-Rentería ES (2014) Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice. Front Cell Neurosci 8:444. https://doi.org/10.3389/fncel.2014.00444

    Article  PubMed  Google Scholar 

  126. Perissinotti PP, Ethington EG, Cribbs L, Koob MD, Martin J, Piedras-Rentería ES (2014) Down-regulation of endogenous KLHL1 decreases voltage-gated calcium current density. Cell Calcium 55:269–280. https://doi.org/10.1016/j.ceca.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  127. Polster A, Dittmer PJ, Perni S, Bichraoui H, Sather WA, Beam KG (2018) Stac proteins suppress Ca2+-dependent inactivation of neuronal l-type Ca2+ channels. J Neurosci 38:9215–9227. https://doi.org/10.1523/JNEUROSCI.0695-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, Zamponi GW, Weiss N (2017) The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca2+ currents by altering calnexin-dependent trafficking of Cav3.2 channels. Sci Rep 7:11513. https://doi.org/10.1038/s41598-017-11591-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Proft J, Weiss N (2015) G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 87:890–906. https://doi.org/10.1124/mol.114.096008

    Article  CAS  PubMed  Google Scholar 

  130. Rehak R, Bartoletti TM, Engbers JD, Berecki G, Turner RW, Zamponi GW (2013) Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS One 8:e61844. https://doi.org/10.1371/journal.pone.0061844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rufenach B, Van Petegem F (2021) Structure and function of STAC proteins: calcium channel modulators and critical components of muscle excitation-contraction coupling. J Biol Chem 297:100874. https://doi.org/10.1016/j.jbc.2021.100874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rzhepetskyy Y, Lazniewska J, Blesneac I, Pamphlett R, Weiss N (2016) CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing. Channels (Austin) 10:466–477. https://doi.org/10.1080/19336950.2016.1204497

    Article  PubMed  Google Scholar 

  133. Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N (2016) A Cav3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels (Austin) 10:346–354. https://doi.org/10.1080/19336950.2016.1186318

    Article  PubMed  Google Scholar 

  134. Sakkaki S, Gangarossa G, Lerat B, Françon D, Forichon L, Chemin J, Valjent E, Lerner-Natoli M, Lory P (2016) Blockade of T-type calcium channels prevents tonic-clonic seizures in a maximal electroshock seizure model. Neuropharmacology 101:320–329. https://doi.org/10.1016/j.neuropharm.2015.09.032

    Article  CAS  PubMed  Google Scholar 

  135. Scholl UI, Stölting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC, Thiel A, Lande M, Frazier BG, Rasoulpour M, Bowlin DL, Sethna CB, Trachtman H et al (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4:e06315. https://doi.org/10.7554/eLife.06315

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shi X, Xiang S, Cao J, Zhu H, Yang B, He Q, Ying M (2019) Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 148:104404. https://doi.org/10.1016/j.phrs.2019.104404

    Article  CAS  PubMed  Google Scholar 

  137. Smith MR, Nelson AB, Du Lac S (2002) Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. J Neurophysiol 87:2031–2042. https://doi.org/10.1152/jn.00821.2001

    Article  PubMed  Google Scholar 

  138. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281:22085–22091. https://doi.org/10.1074/jbc.M603316200

    Article  CAS  PubMed  Google Scholar 

  139. Stephens GJ, Cottrell GS (2019) CACHD1: A new activity-modifying protein for voltage-gated calcium channels. Channels (Austin) 13:120–123. https://doi.org/10.1080/19336950.2019.1600968

    Article  PubMed  Google Scholar 

  140. Stephens KE, Zhou W, Ji Z, Chen Z, He S, Ji H, Guan Y, Taverna SD (2019) Sex differences in gene regulation in the dorsal root ganglion after nerve injury. BMC Genomics 20:147. https://doi.org/10.1186/s12864-019-5512-9

    Article  PubMed  PubMed Central  Google Scholar 

  141. Stevens SR, Rasband MN (2022) Pleiotropic ankyrins: scaffolds for ion channels and transporters. Channels (Austin) 16:216–229. https://doi.org/10.1080/19336950.2022.2120467

    Article  PubMed  Google Scholar 

  142. Stringer RN, Cmarko L, Zamponi GW, De Waard M, Weiss N (2023) Electrophysiological characterization of a Cav3.2 calcium channel missense variant associated with epilepsy and hearing loss. Mol. Brain 16:68. https://doi.org/10.1186/s13041-023-01058-2

    Article  CAS  Google Scholar 

  143. Stringer RN, Jurkovicova-Tarabova B, Huang S, Haji-Ghassemi O, Idoux R, Liashenko A, Souza IA, Rzhepetskyy Y, Lacinova L, Van Petegem F, Zamponi GW, Pamphlett R, Weiss N (2020) A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity. Mol. Brain 13:33. https://doi.org/10.1186/s13041-020-00577-6

    Article  CAS  Google Scholar 

  144. Stringer RN, Jurkovicova-Tarabova B, Souza IA, Ibrahim J, Vacik T, Fathalla WM, Hertecant J, Zamponi GW, Lacinova L, Weiss N (2021) De novo SCN8A and inherited rare CACNA1H variants associated with severe developmental and epileptic encephalopathy. Mol Brain 14:126. https://doi.org/10.1186/s13041-021-00838-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stringer RN, Lazniewska J, Weiss N (2020) Transcriptomic analysis of glycan-processing genes in the dorsal root ganglia of diabetic mice and functional characterization on Cav3.2 channels. Channels (Austin) 14:132–140. https://doi.org/10.1080/19336950.2020.1745406

    Article  PubMed  Google Scholar 

  146. Suzuki H, Kawai J, Taga C, Yaoi T, Hara A, Hirose K, Hayashizaki Y, Watanabe S (1996) Stac, a novel neuron-specific protein with cysteine-rich and SH3 domains. Biochem Biophys Res Commun 229:902–909. https://doi.org/10.1006/bbrc.1996.1900

    Article  CAS  PubMed  Google Scholar 

  147. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tamang HK, Yang RB, Song ZH, Hsu SC, Peng CC, Tung YC, Tzeng BH, Chen CC (2022) Cav 3.2 T-type calcium channel regulates mouse platelet activation and arterial thrombosis. J Thromb Haemost. https://doi.org/10.1111/jth.15745

  149. Thompson WR, Majid AS, Czymmek KJ, Ruff AL, García J, Duncan RL, Farach-Carson MC (2011) Association of the α2δ1 subunit with Cav3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. J Bone Min Res 26:2125–2139. https://doi.org/10.1002/jbmr.437

    Article  CAS  Google Scholar 

  150. Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15:3110–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Turner RW, Zamponi GW (2014) T-type channels buddy up. Pflugers Arch 466:661–675. https://doi.org/10.1007/s00424-013-1434-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Uebele VN, Gotter AL, Nuss CE, Kraus RL, Doran SM, Garson SL, Reiss DR, Li Y, Barrow JC, Reger TS, Yang ZQ, Ballard JE, Tang C, Metzger JM, Wang SP, Koblan KS, Renger JJ (2009) Antagonism of T-type calcium channels inhibits high-fat diet-induced weight gain in mice. J Clin Invest 119:1659–1667. https://doi.org/10.1172/JCI36954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E (2007) The I-II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27:322–330. https://doi.org/10.1523/JNEUROSCI.1817-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP (2016) Low-Voltage-Activated CaV3.1 Calcium channels shape T helper cell cytokine profiles. Immunity 44:782–794. https://doi.org/10.1016/j.immuni.2016.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Weiss N (2022) T-type channels: a new route for calcium entry into platelets. J Thromb Haemost 20:1778–1780. https://doi.org/10.1111/jth.15764

    Article  PubMed  Google Scholar 

  156. Weiss N, Black SA, Bladen C, Chen L, Zamponi GW (2013) Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 465:1159–1170. https://doi.org/10.1007/s00424-013-1259-3

    Article  CAS  PubMed  Google Scholar 

  157. Weiss N, Hameed S, Fernández-Fernández JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818. https://doi.org/10.1074/jbc.M111.290882

    Article  CAS  PubMed  Google Scholar 

  158. Weiss N, Zamponi GW (2012) Regulation of voltage-gated calcium channels by synaptic proteins. Adv Exp Med Biol 740:759–775. https://doi.org/10.1007/978-94-007-2888-2_33

    Article  CAS  PubMed  Google Scholar 

  159. Weiss N, Zamponi GW (2013) Control of low-threshold exocytosis by T-type calcium channels. Biochim Biophys Acta 1828:1579–1586. https://doi.org/10.1016/j.bbamem.2012.07.031

    Article  CAS  PubMed  Google Scholar 

  160. Weiss N, Zamponi GW (2020) Genetic T-type calcium channelopathies. J Med Genet 57:1–10. https://doi.org/10.1136/jmedgenet-2019-106163

    Article  CAS  PubMed  Google Scholar 

  161. Weiss N, Zamponi GW (2021) Opioid receptor regulation of neuronal voltage-gated calcium channels. Cell Mol Neurobiol 41:839–847. https://doi.org/10.1007/s10571-020-00894-3

    Article  CAS  PubMed  Google Scholar 

  162. Welsby PJ, Wang H, Wolfe JT, Colbran RJ, Johnson ML, Barrett PQ (2003) A mechanism for the direct regulation of T-type calcium channels by Ca2+/calmodulin-dependent kinase II. J Neurosci 23:10116–10121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Williams PJ, MacVicar BA, Pittman QJ (1990) Synaptic modulation by dopamine of calcium currents in rat pars intermedia. J Neurosci 10:757–763. https://doi.org/10.1523/JNEUROSCI.10-03-00757.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V (1997) The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol 505:689–705. https://doi.org/10.1111/j.1469-7793.1997.689ba.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214. https://doi.org/10.1186/gb-2004-5-3-214

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wolfart J, Roeper J (2002) Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413. https://doi.org/10.1523/JNEUROSCI.22-09-03404.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wolfe JT, Wang H, Howard J, Garrison JC, Barrett PQ (2003) T-type calcium channel regulation by specific G-protein betagamma subunits. Nature 424:209–213. https://doi.org/10.1038/nature01772

    Article  CAS  PubMed  Google Scholar 

  168. Wolfe JT, Wang H, Perez-Reyes E, Barrett PQ (2002) Stimulation of recombinant Ca(v)3.2, T-type, Ca(2+) channel currents by CaMKIIgamma(C). J Physiol 538:343–355. https://doi.org/10.1113/jphysiol.2001.012839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Woodard GE, López JJ, Jardín I, Salido GM, Rosado JA (2010) TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 285:8045–8053. https://doi.org/10.1074/jbc.M109.033605

    Article  CAS  PubMed  Google Scholar 

  170. Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ (2012) Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 287:6551–6561. https://doi.org/10.1074/jbc.M111.305854

    Article  CAS  PubMed  Google Scholar 

  171. Yang T, He M, Zhang H, Barrett PQ, Hu C (2020) L- and T-type calcium channels control aldosterone production from human adrenals. J Endocrinol 244:237–247. https://doi.org/10.1530/JOE-19-0259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yao J, Davies LA, Howard JD, Adney SK, Welsby PJ, Howell N, Carey RM, Colbran RJ, Barrett PQ (2006) Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II. J Clin Invest 116:2403–2412. https://doi.org/10.1172/JCI27918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K (2011) Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem 286:9489–9502. https://doi.org/10.1074/jbc.M110.166546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446. https://doi.org/10.1038/385442a0

    Article  CAS  PubMed  Google Scholar 

  175. Zhao Y, Huang G, Wu Q, Wu K, Li R, Lei J, Pan X, Yan N (2019) Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature 576:492–497. https://doi.org/10.1038/s41586-019-1801-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

N.W. is supported by a grant from the Czech Science Foundation (GACR #22-23242S) and the National Institute for Research of Metabolic and Cardiovascular Diseases (Program EXCELES # LX22NPO5104), funded by the European Union–Next Generation EU. G.W.Z. is funded by the Canadian Institutes of Health Research and holds a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Contributions

N.W. and G.W.Z. performed the literature analysis and wrote the manuscript.

Corresponding author

Correspondence to Norbert Weiss.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, N., Zamponi, G.W. The T-type calcium channelosome. Pflugers Arch - Eur J Physiol 476, 163–177 (2024). https://doi.org/10.1007/s00424-023-02891-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02891-z

Keywords

Navigation