Skip to main content

Advertisement

Log in

Pathological mechanisms of cigarette smoking, dietary, and sedentary lifestyle risks in vascular dysfunction: mitochondria as a common target of risk factors

  • Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In the past century, the lifespan of the human population has dramatically increased to the 80 s, but it is hindered by a limited health span to the 60 s due to an epidemic increase in the cardiovascular disease which is a main cause of morbidity and mortality. We cannot underestimate the progress in understanding the major cardiovascular risk factors which include cigarette smoking, dietary, and sedentary lifestyle risks. Despite their clinical significance, these modifiable risk factors are still the major contributors to cardiovascular disease. It is, therefore, important to understand the specific molecular mechanisms behind their pathological effects to develop new therapies to improve the treatment of cardiovascular disease. In recent years, our group and others have made a progress in understanding how these risk factors can promote endothelial dysfunction, smooth muscle dysregulation, vascular inflammation, hypertension, lung, and heart diseases. These factors, despite differences in their nature, lead to stereotypical alterations in vascular metabolism and function. Interestingly, cigarette smoking has a tremendous impact on a very distant site from the initial epithelial exposure, namely circulation and vascular cells mediated by a variety of stable cigarette smoke components which promote vascular oxidative stress and alter vascular metabolism and function. Similarly, dietary and sedentary lifestyle risks facilitate vascular cell metabolic reprogramming promoting vascular oxidative stress and dysfunction. Mitochondria are critical in cellular metabolism, and in this work, we discuss a new concept that mitochondria are a common pathobiological target for these risk factors, and mitochondria-targeted treatments may have a therapeutic effect in the patients with cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. (2010) In: How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Publications and Reports of the Surgeon General. Atlanta (GA)

  2. Agarwal AR, Yin F, Cadenas E (2014) Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am J Respir Cell Mol Biol 51:284–293. https://doi.org/10.1165/rcmb.2013-0523OC

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal AR, Zhao L, Sancheti H, Sundar IK, Rahman I, Cadenas E (2012) Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. Am J Physiol Lung Cell Mol Physiol 303:L889-898. https://doi.org/10.1152/ajplung.00219.2012

    Article  CAS  PubMed  Google Scholar 

  4. Ait-Aissa K, Norwood-Toro LE, Terwoord J, Young M, Paniagua LA, Hader SN, Hughes WE, Hockenberry JC, Beare JE, Linn J, Kohmoto T, Kim J, Betts DH, LeBlanc AJ, Gutterman DD, Beyer AM (2022) Noncanonical role of telomerase in regulation of microvascular redox environment with implications for coronary artery disease. Function (Oxf) 3:043. https://doi.org/10.1093/function/zqac043

    Article  Google Scholar 

  5. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA (2022) Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 18:243–258. https://doi.org/10.1038/s41574-021-00626-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Anazawa T, Dimayuga PC, Li H, Tani S, Bradfield J, Chyu KY, Kaul S, Shah PK, Cercek B (2004) Effect of exposure to cigarette smoke on carotid artery intimal thickening: the role of inducible NO synthase. Arterioscler Thromb Vasc Biol 24:1652–1658. https://doi.org/10.1161/01.ATV.0000139925.84444.ad

    Article  CAS  PubMed  Google Scholar 

  7. Audrain-McGovern J, Benowitz NL (2011) Cigarette smoking, nicotine, and body weight. Clin Pharmacol Ther 90:164–168. https://doi.org/10.1038/clpt.2011.105

    Article  CAS  PubMed  Google Scholar 

  8. Azarbal AF, Repella T, Carlson E, Manalo EC, Palanuk B, Vatankhah N, Zientek K, Keene DR, Zhang W, Abraham CZ, Moneta GL, Landry GJ, Alkayed NJ, Sakai LY (2022) A novel model of tobacco smoke-mediated aortic injury. Vasc Endovascular Surg 56:244–252. https://doi.org/10.1177/15385744211063054

    Article  PubMed  Google Scholar 

  9. Bakker H, Jaddoe VW (2011) Cardiovascular and metabolic influences of fetal smoke exposure. Eur J Epidemiol 26:763–770. https://doi.org/10.1007/s10654-011-9621-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balhara YP (2012) Tobacco and metabolic syndrome. Indian J Endocrinol Metab 16:81–87. https://doi.org/10.4103/2230-8210.91197

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barragan R, Ortega-Azorin C, Sorli JV, Asensio EM, Coltell O, St-Onge MP, Portoles O, Corella D (2021) Effect of physical activity, smoking, and sleep on telomere length: a systematic review of observational and intervention studies. J Clin Med 11. https://doi.org/10.3390/jcm11010076

  12. Bauer T, Trump S, Ishaque N, Thurmann L, Gu L, Bauer M, Bieg M, Gu Z, Weichenhan D, Mallm JP, Roder S, Herberth G, Takada E, Mucke O, Winter M, Junge KM, Grutzmann K, Rolle-Kampczyk U, Wang Q, Lawerenz C, Borte M, Polte T, Schlesner M, Schanne M, Wiemann S, Georg C, Stunnenberg HG, Plass C, Rippe K, Mizuguchi J, Herrmann C, Eils R, Lehmann I (2016) Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol 12:861. https://doi.org/10.15252/msb.20156520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bibbins-Domingo K, Chertow GM, Coxson PG, Moran A, Lightwood JM, Pletcher MJ, Goldman L (2010) Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 362:590–599. https://doi.org/10.1056/NEJMoa0907355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P (2019) Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid Redox Signal 30:251–294. https://doi.org/10.1089/ars.2017.7269

    Article  CAS  PubMed  Google Scholar 

  15. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472. https://doi.org/10.1016/j.exger.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brautigam L, Jensen LD, Poschmann G, Nystrom S, Bannenberg S, Dreij K, Lepka K, Prozorovski T, Montano SJ, Aktas O, Uhlen P, Stuhler K, Cao Y, Holmgren A, Berndt C (2013) Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proc Natl Acad Sci U S A 110:20057–20062. https://doi.org/10.1073/pnas.1313753110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brittain EL, Niswender K, Agrawal V, Chen X, Fan R, Pugh ME, Rice TW, Robbins IM, Song H, Thompson C, Ye F, Yu C, Zhu H, West J, Newman JH, Hemnes AR (2020) Mechanistic phase II clinical trial of metformin in pulmonary arterial hypertension. J Am Heart Assoc 9:018349. https://doi.org/10.1161/JAHA.120.018349

    Article  Google Scholar 

  18. Caia GL, Efimova OV, Velayutham M, El-Mahdy MA, Abdelghany TM, Kesselring E, Petryakov S, Sun Z, Samouilov A, Zweier JL (2012) Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging. J Magn Reson 216C:21–27

    Article  Google Scholar 

  19. Caliri AW, Tommasi S, Besaratinia A (2021) Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res 787:108365. https://doi.org/10.1016/j.mrrev.2021.108365

    Article  CAS  PubMed  Google Scholar 

  20. Centers for Disease Control and Prevention. Hypertension cascade: hypertension prevalence, treatment and control estimates among U.S. adults aged 18 years and older applying the criteria from the American College of Cardiology and American Heart Association’s 2017 Hypertension Guideline—NHANES 2015–2018. Atlanta, GA: U.S. Department of Health and Human Services; 2021. Accessed March 12, 2021

  21. Chalouhi N, Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS (2012) Cigarette smoke and inflammation: role in cerebral aneurysm formation and rupture. Mediators Inflamm 2012:271582. https://doi.org/10.1155/2012/271582

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen QW, Edvinsson L, Xu CB (2010) Cigarette smoke extract promotes human vascular smooth muscle cell proliferation and survival through ERK1/2- and NF-kappaB-dependent pathways. ScientificWorldJournal 10:2139–2156. https://doi.org/10.1100/tsw.2010.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheskin LJ, Hess JM, Henningfield J, Gorelick DA (2005) Calorie restriction increases cigarette use in adult smokers. Psychopharmacology 179:430–436. https://doi.org/10.1007/s00213-004-2037-x

    Article  CAS  PubMed  Google Scholar 

  24. Chiolero A, Faeh D, Paccaud F, Cornuz J (2008) Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 87:801–809. https://doi.org/10.1093/ajcn/87.4.801

    Article  CAS  PubMed  Google Scholar 

  25. Cornelius ME, Loretan CG, Wang TW, Jamal A, Homa DM (2022) Tobacco product use among adults - United States, 2020. MMWR Morb Mortal Wkly Rep 71:397–405. https://doi.org/10.15585/mmwr.mm7111a1

    Article  PubMed  PubMed Central  Google Scholar 

  26. D’Onofrio N, Vitiello M, Casale R, Servillo L, Giovane A, Balestrieri ML (2015) Sirtuins in vascular diseases: emerging roles and therapeutic potential. Biochim Biophys Acta 1852:1311–1322. https://doi.org/10.1016/j.bbadis.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Dai X, Gakidou E, Lopez AD (2022) Evolution of the global smoking epidemic over the past half century: strengthening the evidence base for policy action. Tob Control 31:129–137. https://doi.org/10.1136/tobaccocontrol-2021-056535

    Article  PubMed  Google Scholar 

  28. Daiber A, Steven S, Vujacic-Mirski K, Kalinovic S, Oelze M, Di Lisa F, Munzel T (2020) Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or NADPH oxidase-implications for diabetes progression. Int J Mol Sci 21. https://doi.org/10.3390/ijms21103405

  29. Davies SD, May-Zhang LS, Boutaud O, Amarnath V, Kirabo A, Harrison DG (2019) Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions. Pharmacol Ther 205:107418. https://doi.org/10.1016/j.pharmthera.2019.107418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deppen SA, Grogan EL, Aldrich MC, Massion PP (2014) Lung cancer screening and smoking cessation: a teachable moment? J Natl Cancer Inst 106:122. https://doi.org/10.1093/jnci/dju122

    Article  Google Scholar 

  31. Dikalov S, Dikalova A (2022) Mitochondrial deacetylase Sirt3 in vascular dysfunction and hypertension. Curr Opin Nephrol Hypertens 31:151–156. https://doi.org/10.1097/MNH.0000000000000771

    Article  CAS  PubMed  Google Scholar 

  32. Dikalov S, Itani HA, Richmond B, Arslanbaeva L, Vergeade A, Rahman SMJ, Boutaud O, Blackwell T, Massion PP, Harrison DG, Dikalova AE (2019) Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction and enhances hypertension. Am J Physiol Heart Circ Physiol 316:H639–H646. https://doi.org/10.1152/ajpheart.00595.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling K, Harrison DG, Dikalova A (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II - mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20:281–294. https://doi.org/10.1089/ars.2012.4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107:106–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Fessel JP, Flynn CR, Gamboa JL, Harrison DG, Dikalov SI (2017) Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res 121:664–774

    Article  Google Scholar 

  36. Dikalova AE, Pandey AK, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, Billings FTt, Verdin E, Auwerx J, Harrison DG, Dikalov SI, (2020) Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 126:439–452. https://doi.org/10.1161/CIRCRESAHA.119.315767

    Article  CAS  PubMed  Google Scholar 

  37. Dolinsky VW, Morton JS, Oka T, Robillard-Frayne I, Bagdan M, Lopaschuk GD, Des Rosiers C, Walsh K, Davidge ST, Dyck JR (2010) Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56:412–421. https://doi.org/10.1161/HYPERTENSIONAHA.110.154732

    Article  CAS  PubMed  Google Scholar 

  38. Doughan AK, Harrison DG, Dikalov SI (2008) Molecular mechanisms of angiotensin II mediated mitochondrial dysfunction. Linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    Article  CAS  PubMed  Google Scholar 

  39. Elwing J, Panos RJ (2008) Pulmonary hypertension associated with COPD. Int J Chron Obstruct Pulmon Dis 3:55–70. https://doi.org/10.2147/copd.s1170

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663. https://doi.org/10.1073/pnas.0308291101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Forini F, Canale P, Nicolini G, Iervasi G (2020) Mitochondria-targeted drug delivery in cardiovascular disease: a long road to nano-cardio medicine. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12111122

  42. Groppelli A, Giorgi DM, Omboni S, Parati G, Mancia G (1992) Persistent blood pressure increase induced by heavy smoking. J Hypertens 10:495–499

    Article  CAS  PubMed  Google Scholar 

  43. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085. https://doi.org/10.1101/gad.227439.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E, Pennington CT (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548. https://doi.org/10.1001/jama.295.13.1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heydari G, Heidari F, Yousefifard M, Hosseini M (2014) Smoking and diet in healthy adults: a cross-sectional study in tehran, iran, 2010. Iran J Public Health 43:485–491

    PubMed  PubMed Central  Google Scholar 

  46. Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F (2021) Caloric restriction mimetics in nutrition and clinical trials. Front Nutr 8:717343. https://doi.org/10.3389/fnut.2021.717343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ibrahim A, Yucel N, Kim B, Arany Z (2020) Local mitochondrial ATP production regulates endothelial fatty acid uptake and transport. Cell Metab 32(309–319):307. https://doi.org/10.1016/j.cmet.2020.05.018

    Article  CAS  Google Scholar 

  48. Jaimes EA, DeMaster EG, Tian RX, Raij L (2004) Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler Thromb Vasc Biol 24:1031–1036. https://doi.org/10.1161/01.ATV.0000127083.88549.58

    Article  CAS  PubMed  Google Scholar 

  49. Javadov S, Kozlov AV, Camara AKS (2020) Mitochondria in health and diseases. Cells 9. https://doi.org/10.3390/cells9051177

  50. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Rosner B, Speizer FE, Hennekens CH (1994) Smoking cessation and time course of decreased risks of coronary heart disease in middle-aged women. Arch Intern Med 154:169–175

    Article  CAS  PubMed  Google Scholar 

  51. Kim M, Han CH, Lee MY (2014) NADPH oxidase and the cardiovascular toxicity associated with smoking. Toxicol Res 30:149–157. https://doi.org/10.5487/TR.2014.30.3.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kirabo A, Fontana V, de Faria AP, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Vinh A, Amarnath V, Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen SC, Mernaugh RL, Laffer CL, Elijovich F, Davies SS, Moreno H, Madhur MS, Roberts J 2nd, Harrison DG (2014) DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 124:4642–4656. https://doi.org/10.1172/JCI74084

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, Kang PT, Hardwick JP, Yun J, Janota D, Peng J, Kolz C, Guarini G, Wilson G, Shokolenko I, Stevens DA, Chilian WM (2022) Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Res Cardiol 117:3. https://doi.org/10.1007/s00395-021-00908-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kume H, Yamada R, Sato Y, Togawa R (2023) Airway smooth muscle regulated by oxidative stress in COPD. Antioxidants (Basel) 12. https://doi.org/10.3390/antiox12010142

  55. Leone A (2011) Does smoking act as a friend or enemy of blood pressure? Let release Pandora’s box. Cardiol Res Pract 2011:264894. https://doi.org/10.4061/2011/264894

  56. Li H, Xia N, Hasselwander S, Daiber A (2019) Resveratrol and vascular function. Int J Mol Sci 20. https://doi.org/10.3390/ijms20092155

  57. Li Y, Yu C, Shen G, Li G, Shen J, Xu Y, Gong J (2015) Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts. Acta Biochim Biophys Sin (Shanghai) 47:306–312. https://doi.org/10.1093/abbs/gmv013

    Article  CAS  PubMed  Google Scholar 

  58. Li Z, Zhao H, Wang J (2021) Metabolism and chronic inflammation: the links between chronic heart failure and comorbidities. Front Cardiovasc Med 8:650278. https://doi.org/10.3389/fcvm.2021.650278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, Grandner MA, Lavretsky H, Perak AM, Sharma G, Rosamond W, American Heart A (2022) Life’s essential 8: updating and enhancing the American Heart Association’s Construct of Cardiovascular Health: a presidential advisory from the American Heart Association. Circulation 146:e18–e43. https://doi.org/10.1161/CIR.0000000000001078

    Article  PubMed  Google Scholar 

  60. Maas SCE, Mens MMJ, Kuhnel B, van Meurs JBJ, Uitterlinden AG, Peters A, Prokisch H, Herder C, Grallert H, Kunze S, Waldenberger M, Kavousi M, Kayser M, Ghanbari M (2020) Smoking-related changes in DNA methylation and gene expression are associated with cardio-metabolic traits. Clin Epigenetics 12:157. https://doi.org/10.1186/s13148-020-00951-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Madani A, Alack K, Richter MJ, Kruger K (2018) Immune-regulating effects of exercise on cigarette smoke-induced inflammation. J Inflamm Res 11:155–167. https://doi.org/10.2147/JIR.S141149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Metta S, Basalingappa DR, Uppala S, Mitta G (2015) Erythrocyte antioxidant defenses against cigarette smoking in ischemic heart disease. J Clin Diagn Res 9:08–11. https://doi.org/10.7860/JCDR/2015/12237.6128

    Article  CAS  Google Scholar 

  63. Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443. https://doi.org/10.1002/jcp.10333

    Article  CAS  PubMed  Google Scholar 

  64. Minami J, Ishimitsu T, Matsuoka H (1999) Effects of smoking cessation on blood pressure and heart rate variability in habitual smokers. Hypertension 33:586–590

    Article  CAS  PubMed  Google Scholar 

  65. Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A (2015) Harmful effects of nicotine. Indian J Med Paediatr Oncol 36:24–31. https://doi.org/10.4103/0971-5851.151771

    Article  PubMed  PubMed Central  Google Scholar 

  66. Morrow JD (2005) Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 25:279–286. https://doi.org/10.1161/01.ATV.0000152605.64964.c0

    Article  CAS  PubMed  Google Scholar 

  67. Morrow JD, Frei B, Longmire AW, Gaziano JM, Lynch SM, Shyr Y, Strauss WE, Oates JA, Roberts LJ 2nd (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 332:1198–1203. https://doi.org/10.1056/NEJM199505043321804

    Article  CAS  PubMed  Google Scholar 

  68. Nagathihalli NS, Massion PP, Gonzalez AL, Lu P, Datta PK (2012) Smoking induces epithelial-to-mesenchymal transition in non-small cell lung cancer through HDAC-mediated downregulation of E-cadherin. Mol Cancer Ther 11:2362–2372. https://doi.org/10.1158/1535-7163.MCT-12-0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ngwenyama N, Kirabo A, Aronovitz M, Velazquez F, Carrillo-Salinas F, Salvador AM, Nevers T, Amarnath V, Tai A, Blanton RM, Harrison DG, Alcaide P (2021) Isolevuglandin-modified cardiac proteins drive CD4+ T-cell activation in the heart and promote cardiac dysfunction. Circulation 143:1242–1255. https://doi.org/10.1161/CIRCULATIONAHA.120.051889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317. https://doi.org/10.1126/science.1117728

    Article  CAS  PubMed  Google Scholar 

  71. Ostfeld AM (1967) The interaction of biological and social variables in cardiovascular disease. Milbank Mem Fund Q 45(Suppl):13–18

    Article  Google Scholar 

  72. Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR, Gius D (2011) Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3:102–107

    Article  CAS  PubMed  Google Scholar 

  73. Panov AV, Mayorov VI, Dikalova AE, Dikalov SI (2022) Long-chain and medium-chain fatty acids in energy metabolism of murine kidney mitochondria. Int J Mol Sci 24. https://doi.org/10.3390/ijms24010379

  74. Patrick DM, de la Visitacion N, Krishnan J, Chen W, Ormseth MJ, Stein CM, Davies SS, Amarnath V, Crofford LJ, Williams JM, Zhao S, Smart CD, Dikalov S, Dikalova A, Xiao L, Van Beusecum JP, Ao M, Fogo AB, Kirabo A, Harrison DG (2022) Isolevuglandins disrupt PU.1-mediated C1q expression and promote autoimmunity and hypertension in systemic lupus erythematosus. JCI Insight 7. https://doi.org/10.1172/jci.insight.136678

  75. Peluffo G, Calcerrada P, Piacenza L, Pizzano N, Radi R (2009) Superoxide-mediated inactivation of nitric oxide and peroxynitrite formation by tobacco smoke in vascular endothelium: studies in cultured cells and smokers. Am J Physiol Heart Circ Physiol 296:H1781-1792. https://doi.org/10.1152/ajpheart.00930.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pillai VB, Sundaresan NR, Jeevanandam V, Gupta MP (2010) Mitochondrial SIRT3 and heart disease. Cardiovasc Res 88:250–256. https://doi.org/10.1093/cvr/cvq250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prasad S, Sajja RK, Kaisar MA, Park JH, Villalba H, Liles T, Abbruscato T, Cucullo L (2017) Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol 12:58–69. https://doi.org/10.1016/j.redox.2017.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667. https://doi.org/10.1016/j.cmet.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  79. Quitting Smoking Among Adults - United States - (2011) Weekly. 60(44); 1513–1519: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6044a6042.htm#tab6041

  80. Raffin J, de Souto Barreto P, Le Traon AP, Vellas B, Aubertin-Leheudre M, Rolland Y (2023) Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev 83:101807. https://doi.org/10.1016/j.arr.2022.101807

    Article  CAS  PubMed  Google Scholar 

  81. Rahman MM, Laher I (2007) Structural and functional alteration of blood vessels caused by cigarette smoking: an overview of molecular mechanisms. Curr Vasc Pharmacol 5:276–292

    Article  CAS  PubMed  Google Scholar 

  82. Rahman SM, Ji X, Zimmerman LJ, Li M, Harris BK, Hoeksema MD, Trenary IA, Zou Y, Qian J, Slebos RJ, Beane J, Spira A, Shyr Y, Eisenberg R, Liebler DC, Young JD, Massion PP (2016) The airway epithelium undergoes metabolic reprogramming in individuals at high risk for lung cancer. JCI insight 1:88814. https://doi.org/10.1172/jci.insight.88814

    Article  PubMed  Google Scholar 

  83. Raza H, John A, Nemmar A (2013) Short-term effects of nose-only cigarette smoke exposure on glutathione redox homeostasis, cytochrome P450 1A1/2 and respiratory enzyme activities in mice tissues. Cell Physiol Biochem 31:683–692. https://doi.org/10.1159/000350087

    Article  CAS  PubMed  Google Scholar 

  84. Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, Woodward KA, Chonchol M, Gioscia-Ryan RA, Murphy MP, Seals DR (2018) Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71:1056–1063. https://doi.org/10.1161/HYPERTENSIONAHA.117.10787

    Article  CAS  PubMed  Google Scholar 

  85. Roth GA, Johnson C, Abajobir A et al (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70:1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rotllan N, Camacho M, Tondo M, Diarte-Anazco EMG, Canyelles M, Mendez-Lara KA, Benitez S, Alonso N, Mauricio D, Escola-Gil JC, Blanco-Vaca F, Julve J (2021) Therapeutic potential of emerging NAD+-increasing strategies for cardiovascular diseases. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10121939

  87. Sacco RL, Benjamin EJ, Broderick JP, Dyken M, Easton JD, Feinberg WM, Goldstein LB, Gorelick PB, Howard G, Kittner SJ, Manolio TA, Whisnant JP, Wolf PA (1997) American Heart Association Prevention Conference. IV. Prevention and Rehabilitation of Stroke. Risk factors Stroke 28:1507–1517

    CAS  PubMed  Google Scholar 

  88. Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, Miller M, Rimm EB, Rudel LL, Robinson JG, Stone NJ, Van Horn LV, American Heart A (2017) Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 136:e1–e23. https://doi.org/10.1161/CIR.0000000000000510

    Article  PubMed  Google Scholar 

  89. Sasaki J, Iwashita M, Kono S (2006) Statins: beneficial or adverse for glucose metabolism. J Atheroscler Thromb 13:123–129. https://doi.org/10.5551/jat.13.123

    Article  CAS  PubMed  Google Scholar 

  90. Sevilla-Montero J, Labrousse-Arias D, Fernandez-Perez C, Fernandez-Blanco L, Barreira B, Mondejar-Parreno G, Alfaro-Arnedo E, Lopez IP, Perez-Rial S, Peces-Barba G, Pichel JG, Peinado VI, Cogolludo A, Calzada MJ (2021) Cigarette smoke directly promotes pulmonary arterial remodeling and Kv7.4 channel dysfunction. Am J Respir Crit Care Med 203:1290–1305. https://doi.org/10.1164/rccm.201911-2238OC

    Article  CAS  PubMed  Google Scholar 

  91. Sevilla-Montero J, Munar-Rubert O, Pino-Fadon J, Aguilar-Latorre C, Villegas-Esguevillas M, Climent B, Agro M, Choya-Foces C, Martinez-Ruiz A, Balsa E, Munoz-Calleja C, Gomez-Punter RM, Vazquez-Espinosa E, Cogolludo A, Calzada MJ (2022) Cigarette smoke induces pulmonary arterial dysfunction through an imbalance in the redox status of the soluble guanylyl cyclase. Free Radic Biol Med 193:9–22. https://doi.org/10.1016/j.freeradbiomed.2022.09.026

    Article  CAS  PubMed  Google Scholar 

  92. Shimosato T, Geddawy A, Tawa M, Imamura T, Okamura T (2012) Chronic administration of nicotine-free cigarette smoke extract impaired endothelium-dependent vascular relaxation in rats via increased vascular oxidative stress. J Pharmacol Sci 118:206–214

    Article  CAS  PubMed  Google Scholar 

  93. Starke RM, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez F, Hasan DM, Rosenwasser RH, Owens GK, Koch WJ, Dumont AS (2013) Cigarette smoke modulates vascular smooth muscle phenotype: implications for carotid and cerebrovascular disease. PLoS One 8:71954. https://doi.org/10.1371/journal.pone.0071954

    Article  CAS  Google Scholar 

  94. Stewart J, Manmathan G, Wilkinson P (2017) Primary prevention of cardiovascular disease: a review of contemporary guidance and literature. JRSM Cardiovasc Dis 6:2048004016687211. https://doi.org/10.1177/2048004016687211

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tao R, Vassilopoulos A, Parisiadou L, Yan Y, Gius D (2014) Regulation of MnSOD enzymatic activity by Sirt3 connects the mitochondrial acetylome signaling networks to aging and carcinogenesis. Antioxid Redox Signal 20:1646–1654. https://doi.org/10.1089/ars.2013.5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tian R, Colucci WS, Arany Z, Bachschmid MM, Ballinger SW, Boudina S, Bruce JE, Busija DW, Dikalov S, Dorn GW II, Galis ZS, Gottlieb RA, Kelly DP, Kitsis RN, Kohr MJ, Levy D, Lewandowski ED, McClung JM, Mochly-Rosen D, O’Brien KD, O’Rourke B, Park JY, Ping P, Sack MN, Sheu SS, Shi Y, Shiva S, Wallace DC, Weiss RG, Vernon HJ, Wong R, Schwartz Longacre L (2019) Unlocking the secrets of mitochondria in the cardiovascular system: path to a cure in heart failure-a report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation 140:1205–1216. https://doi.org/10.1161/CIRCULATIONAHA.119.040551

    Article  PubMed  PubMed Central  Google Scholar 

  97. Townsend N, Kazakiewicz D, Lucy Wright F, Timmis A, Huculeci R, Torbica A, Gale CP, Achenbach S, Weidinger F, Vardas P (2022) Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol 19:133–143. https://doi.org/10.1038/s41569-021-00607-3

    Article  PubMed  Google Scholar 

  98. Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H (2012) The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 90:713–738. https://doi.org/10.1139/y2012-073

    Article  CAS  PubMed  Google Scholar 

  99. Tsuchiya M, Asada A, Kasahara E, Sato EF, Shindo M, Inoue M (2002) Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma. Circulation 105:1155–1157

    Article  CAS  PubMed  Google Scholar 

  100. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA (2022) The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol 80:2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005

    Article  PubMed  Google Scholar 

  101. Wang J, Wang L, Chen X, Liang ML, Wei DH, Cao W, Zhang J (2022) Cigarette smoke extract stimulates human pulmonary artery smooth muscle cell proliferation: role of inflammation and oxidative stress. Iran J Basic Med Sci 25:755–761. https://doi.org/10.22038/IJBMS.2022.64170.14133

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y (2021) Smoking and the pathophysiology of peripheral artery disease. Front Cardiovasc Med 8:704106. https://doi.org/10.3389/fcvm.2021.704106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Whitehead AK, Erwin AP, Yue X (2021) Nicotine and vascular dysfunction. Acta Physiol (Oxf) 231:13631. https://doi.org/10.1111/apha.13631

  104. World Health Organization. International Agency for Research on Cancer. Reversal of risk after quitting smoking. Risk of cardiovascular diseases after smoking cessation. (2007). IARC Handbook of Cancer Prevention vol 11

  105. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ 2nd, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126:50–67. https://doi.org/10.1172/JCI80761

    Article  PubMed  Google Scholar 

  106. Xing AP, Du YC, Hu XY, Xu JY, Zhang HP, Li Y, Nie X (2012) Cigarette smoke extract stimulates rat pulmonary artery smooth muscle cell proliferation via PKC-PDGFB signaling. J Biomed Biotechnol 2012:534384. https://doi.org/10.1155/2012/534384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xiong J, Kawagishi H, Yan Y, Liu J, Wells QS, Edmunds LR, Fergusson MM, Yu ZX, Rovira II, Brittain EL, Wolfgang MJ, Jurczak MJ, Fessel JP, Finkel T (2018) A metabolic basis for endothelial-to-mesenchymal transition. Mol Cell 69(689–698):687. https://doi.org/10.1016/j.molcel.2018.01.010

    Article  CAS  Google Scholar 

  108. Yu W, Qin J, Chen C, Fu Y, Wang W (2018) Moderate calorie restriction attenuates ageassociated alterations and improves cardiac function by increasing SIRT1 and SIRT3 expression. Mol Med Rep 18:4087–4094. https://doi.org/10.3892/mmr.2018.9390

    Article  CAS  PubMed  Google Scholar 

  109. Yu Y, Zhou L, Yang Y, Liu Y (2018) Cycloastragenol: an exciting novel candidate for age-associated diseases. Exp Ther Med 16:2175–2182. https://doi.org/10.3892/etm.2018.6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yusuf S, Joseph P, Rangarajan S, Islam S, Mente A, Hystad P, Brauer M, Kutty VR, Gupta R, Wielgosz A, AlHabib KF, Dans A, Lopez-Jaramillo P, Avezum A, Lanas F, Oguz A, Kruger IM, Diaz R, Yusoff K, Mony P, Chifamba J, Yeates K, Kelishadi R, Yusufali A, Khatib R, Rahman O, Zatonska K, Iqbal R, Wei L, Bo H, Rosengren A, Kaur M, Mohan V, Lear SA, Teo KK, Leong D, O’Donnell M, McKee M, Dagenais G (2020) Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 395:795–808. https://doi.org/10.1016/S0140-6736(19)32008-2

    Article  PubMed  Google Scholar 

  111. Zhu Y, Park SH, Ozden O, Kim HS, Jiang H, Vassilopoulos A, Spitz DR, Gius D (2012) Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radic Biol Med 53:828–833. https://doi.org/10.1016/j.freeradbiomed.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funding from the National Institutes of Health (R01HL144943 and RO1HL157583) and the American Heart Association Transformational Project Award (19TPA34910157).

Author information

Authors and Affiliations

Authors

Contributions

S.D. and A.D. wrote the main manuscript text, and S.G. updated the manuscript and prepared Figs. 1, 2, and 3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sergey I. Dikalov.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Consent for publication

Authors give consent for the publication of identifiable details, which can include images and details within the text (“Material”) to be published in the above journal and article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is published as part of the Special Issue on “Impact of lifestyle and behavioral risk factors on endothelial function and vascular biology.”

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikalov, S.I., Gutor, S. & Dikalova, A.E. Pathological mechanisms of cigarette smoking, dietary, and sedentary lifestyle risks in vascular dysfunction: mitochondria as a common target of risk factors. Pflugers Arch - Eur J Physiol 475, 857–866 (2023). https://doi.org/10.1007/s00424-023-02806-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-023-02806-y

Keywords

Navigation