Skip to main content
Log in

Cereblon: promise and challenges for combating human diseases

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cereblon (CRBN) is a substrate recognition protein in the E3-ligase ubiquitin complex. The binding target of CRBN varies according to tissues and cells, and the protein regulates various biological functions by regulating tissue-specific targets. As new endogenous targets of CRBN have been identified over the past decade, the physiological and pathological functions of CRBN and its potential as a therapeutic target in various diseases have greatly expanded. For this purpose, in this review article, we introduce the basic principle of the ubiquitin–proteasome system, the regulation of physiological/pathological functions related to the endogenous substrate of CRBN, and the discovery of immunomodulatory imide drug-mediated neo-substrates of CRBN. In addition, the development of CRBN-based proteolysis-targeting chimeras, which has been actively researched recently, and strategies for developing therapeutic agents using them are introduced. These recent updates on CRBN will be useful in the establishment of strategies for disease treatment and utilization of CRBNs in biomedical engineering and clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

ARID2:

AT-rich interactive domain 2

BKCa :

Large conductance Ca2+-activated K+ channel

CDK:

Cyclin-dependent kinase

CLC:

Voltage-gated chloride channel

CRBN:

Cereblon

CRL:

Cullin-RING E3 ligase

DCAF:

DDB1-CUL4-associated factor

DDB1:

DNA damage-binding protein 1

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

FKBP12:

FK506 binding protein 12

GS:

Glutamine synthetase

GSK-3β:

Glycogen synthase kinase 3 beta

GSPT1:

G1 to S phase transition 1

HMGCR:

HMG-CoA reductase

IKZF:

Ikaros family zinc finger protein

IMiDs:

Immunomodulatory imide drugs

IRF:

Interferon regulatory factor

MAPK:

p38 mitogen-activated protein kinase

MEFs:

Mouse embryonic fibroblasts

MEIS2:

Myeloid ecotropic insertion site 2

NLRP3:

NOD-like receptor pyrin domain-containing protein 3

PHD-finger:

Plant homeodomain-finger

PLK1:

Polo-like kinase 1

PLZF:

Promyelocytic leukemia zinc finger

PROTAC:

Proteolysis-targeting chimera

SALL4:

Spalt like transcription factor 4

SKP1:

S-phase kinase associated protein 1

TLR4:

Toll-like receptor 4

VHL:

Von Hippel-Lindau

References

  1. Adhikari B, Bozilovic J, Diebold M, Schwarz JD, Hofstetter J, Schroder M, Wanior M, Narain A, Vogt M, Dudvarski Stankovic N, Baluapuri A, Schonemann L, Eing L, Bhandare P, Kuster B, Schlosser A, Heinzlmeir S, Sotriffer C, Knapp S, Wolf E (2020) PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol 16:1179–1188. https://doi.org/10.1038/s41589-020-00652-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson NA, Cryan J, Ahmed A, Dai H, McGonagle GA, Rozier C, Benowitz AB (2020) Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg Med Chem Lett 30:127106. https://doi.org/10.1016/j.bmcl.2020.127106

    Article  CAS  PubMed  Google Scholar 

  3. Asatsuma-Okumura T, Ando H, De Simone M, Yamamoto J, Sato T, Shimizu N, Asakawa K, Yamaguchi Y, Ito T, Guerrini L, Handa H (2019) p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol 15:1077–1084. https://doi.org/10.1038/s41589-019-0366-7

    Article  CAS  PubMed  Google Scholar 

  4. Asatsuma-Okumura T, Ito T, Handa H (2020) Molecular mechanisms of the teratogenic effects of thalidomide. Pharmaceuticals (Basel) 13. https://doi.org/10.3390/ph13050095

  5. Awan FT, Johnson AJ, Lapalombella R, Hu W, Lucas M, Fischer B, Byrd JC (2010) Thalidomide and lenalidomide as new therapeutics for the treatment of chronic lymphocytic leukemia. Leuk Lymphoma 51:27–38. https://doi.org/10.3109/10428190903350405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bassi ZI, Fillmore MC, Miah AH, Chapman TD, Maller C, Roberts EJ, Davis LC, Lewis DE, Galwey NW, Waddington KE, Parravicini V, Macmillan-Jones AL, Gongora C, Humphreys PG, Churcher I, Prinjha RK, Tough DF (2018) Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem Biol 13:2862–2867. https://doi.org/10.1021/acschembio.8b00705

    Article  CAS  PubMed  Google Scholar 

  7. Ben-Nissan G, Sharon M (2014) Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 4:862–884. https://doi.org/10.3390/biom4030862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benedetti R, Conte M, Altucci L (2015) Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal 23:99–126. https://doi.org/10.1089/ars.2013.5776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bian J, Ren J, Li Y, Wang J, Xu X, Feng Y, Tang H, Wang Y, Li Z (2018) Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg Chem 81:373–381. https://doi.org/10.1016/j.bioorg.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  10. Bjorklund CC, Kang J, Amatangelo M, Polonskaia A, Katz M, Chiu H, Couto S, Wang M, Ren Y, Ortiz M, Towfic F, Flynt JE, Pierceall W, Thakurta A (2020) Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia 34:1197–1201. https://doi.org/10.1038/s41375-019-0620-8

    Article  PubMed  Google Scholar 

  11. Bjorklund CC, Lu L, Kang J, Hagner PR, Havens CG, Amatangelo M, Wang M, Ren Y, Couto S, Breider M, Ning Y, Gandhi AK, Daniel TO, Chopra R, Klippel A, Thakurta AG (2015) Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J 5:e354. https://doi.org/10.1038/bcj.2015.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brand M, Jiang BS, Bauer S, Donovan KA, Liang YK, Wang ES, Nowak RP, Yuan JTC, Zhang TH, Kwiatkowski N, Muller AC, Fischer ES, Gray NS, Winter GE (2019) Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chemical Biology 26:300-+. doi:https://doi.org/10.1016/j.chembiol.2018.11.006

  13. Bricelj A, Steinebach C, Kuchta R, Gutschow M, Sosic I (2021) E3 ligase ligands in successful protacs: an overview of syntheses and linker attachment points. Front Chem 9:707317. https://doi.org/10.3389/fchem.2021.707317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Broyl A, Kuiper R, van Duin M, van der Holt B, el Jarari L, Bertsch U, Zweegman S, Buijs A, Hose D, Lokhorst HM, Goldschmidt H, Sonneveld P (2013) High cereblon expression is associated with better survival in patients with newly diagnosed multiple myeloma treated with thalidomide maintenance. Blood 121:624–627. https://doi.org/10.1182/blood-2012-06-438101

    Article  CAS  PubMed  Google Scholar 

  15. Burslem GM, Crews CM (2020) Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181:102–114. https://doi.org/10.1016/j.cell.2019.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao F, de Weerd S, Chen D, Zwinderman MRH, van der Wouden PE, Dekker FJ (2020) Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC). Eur J Med Chem 208:112800. https://doi.org/10.1016/j.ejmech.2020.112800

    Article  CAS  PubMed  Google Scholar 

  17. Cavo M (2011) A third-generation IMiD for MM. Blood 118:2931–2932. https://doi.org/10.1182/blood-2011-07-364315

    Article  CAS  PubMed  Google Scholar 

  18. Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B, Chie-Leon B, Rychak E, Corral LG, Ren YJ, Wang M, Riley M, Delker SL, Ito T, Ando H, Mori T, Hirano Y, Handa H, Hakoshima T, Daniel TO, Cathers BE (2014) Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat Struct Mol Biol 21:803–809. https://doi.org/10.1038/nsmb.2874

    Article  CAS  PubMed  Google Scholar 

  19. Chen YA, Peng YJ, Hu MC, Huang JJ, Chien YC, Wu JT, Chen TY, Tang CY (2015) The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex mediates the degradation of CLC-1 chloride channels. Sci Rep 5:10667. https://doi.org/10.1038/srep10667

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W (2019) The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 1871:138–159. https://doi.org/10.1016/j.bbcan.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  21. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085. https://doi.org/10.1073/pnas.91.9.4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Damaj G, Lefrere F, Delarue R, Varet B, Furman R, Hermine O (2003) Thalidomide therapy induces response in relapsed mantle cell lymphoma. Leukemia 17:1914–1915. https://doi.org/10.1038/sj.leu.2403058

    Article  CAS  PubMed  Google Scholar 

  23. Del Prete D, Rice RC, Rajadhyaksha AM, D’Adamio L (2016) Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J Biol Chem 291:17209–17227. https://doi.org/10.1074/jbc.M116.733626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dijkhuizen T, van Essen T, van der Vlies P, Verheij JB, Sikkema-Raddatz B, van der Veen AY, Gerssen-Schoorl KB, Buys CH, Kok K (2006) FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions. Am J Med Genet A 140:2482–2487. https://doi.org/10.1002/ajmg.a.31487

    Article  PubMed  Google Scholar 

  25. Eichner R, Heider M, Fernandez-Saiz V, van Bebber F, Garz AK, Lemeer S, Rudelius M, Targosz BS, Jacobs L, Knorn AM, Slawska J, Platzbecker U, Germing U, Langer C, Knop S, Einsele H, Peschel C, Haass C, Keller U, Schmid B, Gotze KS, Kuster B, Bassermann F (2016) Immunomodulatory drugs disrupt the cereblon-CD147-MCT1 axis to exert antitumor activity and teratogenicity. Nat Med 22:735–743. https://doi.org/10.1038/nm.4128

    Article  CAS  PubMed  Google Scholar 

  26. Fecteau JF, Corral LG, Ghia EM, Gaidarova S, Futalan D, Bharati IS, Cathers B, Schwaederle M, Cui B, Lopez-Girona A, Messmer D, Kipps TJ (2014) Lenalidomide inhibits the proliferation of CLL cells via a cereblon/p21(WAF1/Cip1)-dependent mechanism independent of functional p53. Blood 124:1637–1644. https://doi.org/10.1182/blood-2014-03-559591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fischer ES, Bohm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V, Lingaraju GM, Tichkule RB, Schebesta M, Forrester WC, Schirle M, Hassiepen U, Ottl J, Hild M, Beckwith RE, Harper JW, Jenkins JL, Thoma NH (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53. https://doi.org/10.1038/nature13527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu SJ, Hu MC, Peng YJ, Fang HY, Hsiao CT, Chen TY, Jeng CJ, Tang CY (2020) CUL4-DDB1-CRBN E3 ubiquitin ligase regulates proteostasis of ClC-2 chloride channels: implication for aldosteronism and leukodystrophy. Cells 9. https://doi.org/10.3390/cells9061332

  29. Gandhi AK, Mendy D, Waldman M, Chen G, Rychak E, Miller K, Gaidarova S, Ren Y, Wang M, Breider M, Carmel G, Mahmoudi A, Jackson P, Abbasian M, Cathers BE, Schafer PH, Daniel TO, Lopez-Girona A, Thakurta A, Chopra R (2014) Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity. Br J Haematol 164:233–244. https://doi.org/10.1111/bjh.12622

    Article  CAS  PubMed  Google Scholar 

  30. Gao H, Wu Y, Sun Y, Yang Y, Zhou G, Rao Y (2020) Design, synthesis, and evaluation of highly potent FAK-targeting PROTACs. ACS Med Chem Lett 11:1855–1862. https://doi.org/10.1021/acsmedchemlett.9b00372

    Article  CAS  PubMed  Google Scholar 

  31. Gao S, Wang S, Song Y (2020) Novel immunomodulatory drugs and neo-substrates. Biomark Res 8:2. https://doi.org/10.1186/s40364-020-0182-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gil M, Kim YK, Kim HY, Pak HK, Park CS, Lee KJ (2018) Cereblon deficiency confers resistance against polymicrobial sepsis by the activation of AMP activated protein kinase and heme-oxygenase-1. Biochem Biophys Res Commun 495:976–981. https://doi.org/10.1016/j.bbrc.2017.11.098

    Article  CAS  PubMed  Google Scholar 

  33. Gomes P, Outeiro TF, Cavadas C (2015) Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci 36:756–768. https://doi.org/10.1016/j.tips.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  34. Gooding S, Ansari-Pour N, Towfic F, Ortiz Estevez M, Chamberlain PP, Tsai KT, Flynt E, Hirst M, Rozelle D, Dhiman P, Neri P, Ramasamy K, Bahlis N, Vyas P, Thakurta A (2021) Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood 137:232–237. https://doi.org/10.1182/blood.2020007081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gopalakrishnan R, Matta H, Tolani B, Triche T Jr, Chaudhary PM (2015) Immunomodulatory drugs target IKZF1-IRF4-MYC axis in primary effusion lymphoma in a cereblon-dependent manner and display synergistic cytotoxicity with BRD4 inhibitors. Oncogene. https://doi.org/10.1038/onc.2015.245

    Article  PubMed  PubMed Central  Google Scholar 

  36. Greenberg AJ, Walters DK, Kumar SK, Vincent Rajkumar S, Jelinek DF (2013) Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels. Eur J Haematol 91:504–513. https://doi.org/10.1111/ejh.12192

    Article  CAS  PubMed  Google Scholar 

  37. Guharoy M, Bhowmick P, Sallam M, Tompa P (2016) Tripartite degrons confer diversity and specificity on regulated protein degradation in the ubiquitin-proteasome system. Nat Commun 7:10239. https://doi.org/10.1038/ncomms10239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haertle L, Barrio S, Munawar U, Han S, Zhou X, Vogt C, Alonso R, Bittrich M, Ruiz-Heredia Y, Da-Via M, Zovko J, Garitano-Trojaola A, Bolli N, Ruckdeschel A, Stuhmer T, Chatterjee M, Kull M, Kronke J, Agirre X, Martin-Subero I, Raab P, Einsele H, Rasche L, Martinez-Lopez J, Haaf T, Kortum KM (2021) Cereblon enhancer methylation and IMiD resistance in multiple myeloma. Blood. https://doi.org/10.1182/blood.2020010452

    Article  PubMed  Google Scholar 

  39. Hagner PR, Man HW, Fontanillo C, Wang M, Couto S, Breider M, Bjorklund C, Havens CG, Lu G, Rychak E, Raymon H, Narla RK, Barnes L, Khambatta G, Chiu H, Kosek J, Kang J, Amantangelo MD, Waldman M, Lopez-Girona A, Cai T, Pourdehnad M, Trotter M, Daniel TO, Schafer PH, Klippel A, Thakurta A, Chopra R, Gandhi AK (2015) CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126:779–789. https://doi.org/10.1182/blood-2015-02-628669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansen JD, Condroski K, Correa M, Muller G, Man HW, Ruchelman A, Zhang W, Vocanson F, Crea T, Liu W, Lu G, Baculi F, LeBrun L, Mahmoudi A, Carmel G, Hickman M, Lu CC (2018) Protein Degradation via CRL4(CRBN) Ubiquitin ligase: discovery and structure-activity relationships of novel glutarimide analogs that promote degradation of Aiolos and/or GSPT1. J Med Chem 61:492–503. https://doi.org/10.1021/acs.jmedchem.6b01911

    Article  CAS  PubMed  Google Scholar 

  41. Hansen JD, Correa M, Alexander M, Nagy M, Huang D, Sapienza J, Lu G, LeBrun LA, Cathers BE, Zhang W, Tang Y, Ammirante M, Narla RK, Piccotti JR, Pourdehnad M, Lopez-Girona A (2021) CC-90009: a cereblon e3 ligase modulating drug that promotes selective degradation of GSPT1 for the treatment of acute myeloid leukemia. J Med Chem 64:1835–1843. https://doi.org/10.1021/acs.jmedchem.0c01489

    Article  CAS  PubMed  Google Scholar 

  42. Hansen JD, Correa M, Nagy MA, Alexander M, Plantevin V, Grant V, Whitefield B, Huang D, Kercher T, Harris R, Narla RK, Leisten J, Tang Y, Moghaddam M, Ebinger K, Piccotti J, Havens CG, Cathers B, Carmichael J, Daniel T, Vessey R, Hamann LG, Leftheris K, Mendy D, Baculi F, LeBrun LA, Khambatta G, Lopez-Girona A (2020) Discovery of CRBN E3 Ligase Modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J Med Chem 63:6648–6676. https://doi.org/10.1021/acs.jmedchem.9b01928

    Article  CAS  PubMed  Google Scholar 

  43. Hao BB, Li XJ, Jia XL, Wang YX, Zhai LH, Li DZ, Liu J, Zhang D, Chen YL, Xu YH, Lee SK, Xu GF, Chen XH, Dang YJ, Liu B, Tan MJ (2020) The novel cereblon modulator CC-885 inhibits mitophagy via selective degradation of BNIP3L. Acta Pharmacol Sin 41:1246–1254. https://doi.org/10.1038/s41401-020-0367-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He K, Zhang Z, Wang W, Zheng X, Wang X, Zhang X (2020) Discovery and biological evaluation of proteolysis targeting chimeras (PROTACs) as an EGFR degraders based on osimertinib and lenalidomide. Bioorg Med Chem Lett 30:127167. https://doi.org/10.1016/j.bmcl.2020.127167

    Article  CAS  PubMed  Google Scholar 

  45. Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, Lawatscheck J, Baek K, Garz AK, Rudelius M, Deuschle FC, Keller U, Lemeer S, Verbeek M, Gotze KS, Skerra A, Weber WA, Buchner J, Schulman BA, Kuster B, Fernandez-Saiz V, Bassermann F (2021) The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Mol Cell 81(1170–1186):e1110. https://doi.org/10.1016/j.molcel.2020.12.046

    Article  CAS  Google Scholar 

  46. Heintel D, Rocci A, Ludwig H, Bolomsky A, Caltagirone S, Schreder M, Pfeifer S, Gisslinger H, Zojer N, Jager U, Palumbo A (2013) High expression of cereblon (CRBN) is associated with improved clinical response in patients with multiple myeloma treated with lenalidomide and dexamethasone. Br J Haematol 161:695–700. https://doi.org/10.1111/bjh.12338

    Article  CAS  PubMed  Google Scholar 

  47. Henning RH, Brundel B (2017) Proteostasis in cardiac health and disease. Nat Rev Cardiol 14:637–653. https://doi.org/10.1038/nrcardio.2017.89

    Article  CAS  PubMed  Google Scholar 

  48. Higgins JJ, Hao J, Kosofsky BE, Rajadhyaksha AM (2008) Dysregulation of large-conductance Ca2+-activated K+ channel expression in nonsyndromal mental retardation due to a cereblon p. R419X mutation. Neurogenetics 9:219–223. https://doi.org/10.1007/s10048-008-0128-2

    Article  CAS  PubMed  Google Scholar 

  49. Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927–1931. https://doi.org/10.1212/01.wnl.0000146196.01316.a2

    Article  CAS  PubMed  Google Scholar 

  50. Higgins JJ, Tal AL, Sun X, Hauck SC, Hao J, Kosofosky BE, Rajadhyaksha AM (2010) Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence. J Neurogenet 24:18–26. https://doi.org/10.3109/01677060903567849

    Article  CAS  PubMed  Google Scholar 

  51. Hohberger B, Enz R (2009) Cereblon is expressed in the retina and binds to voltage-gated chloride channels. FEBS Lett 583:633–637. https://doi.org/10.1016/j.febslet.2009.01.018

    Article  CAS  PubMed  Google Scholar 

  52. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350. https://doi.org/10.1126/science.1177319

    Article  CAS  PubMed  Google Scholar 

  53. Jackson S, Xiong Y (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34:562–570. https://doi.org/10.1016/j.tibs.2009.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jang SM, Nathans JF, Fu H, Redon CE, Jenkins LM, Thakur BL, Pongor LS, Baris AM, Gross JM, O’Neill MJ, Indig FE, Cappell SD, Aladjem MI (2020) The RepID-CRL4 ubiquitin ligase complex regulates metaphase to anaphase transition via BUB3 degradation. Nat Commun 11:24. https://doi.org/10.1038/s41467-019-13808-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeon S, Yoon YS, Kim HK, Han J, Lee KM, Seol JE, Cho SK, Park CS (2021) Ablation of CRBN induces loss of type I collagen and SCH in mouse skin by fibroblast senescence via the p38 MAPK pathway. Aging (Albany NY) 13:6406–6419. https://doi.org/10.18632/aging.202744

    Article  CAS  Google Scholar 

  56. Jeon SJ, Ham J, Park CS, Lee B (2020) Susceptibility of pentylenetetrazole-induced seizures in mice with Cereblon gene knockout. BMB Rep 53:484–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang X, Zhou J, Wang Y, Liu X, Xu K, Xu J, Feng F, Sun H (2021) PROTACs suppression of GSK-3beta, a crucial kinase in neurodegenerative diseases. Eur J Med Chem 210:112949. https://doi.org/10.1016/j.ejmech.2020.112949

    Article  CAS  PubMed  Google Scholar 

  58. Jo S, Lee KH, Song S, Jung YK, Park CS (2005) Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J Neurochem 94:1212–1224. https://doi.org/10.1111/j.1471-4159.2005.03344.x

    Article  CAS  PubMed  Google Scholar 

  59. Kang JA, Park SH, Jeong SP, Han MH, Lee CR, Lee KM, Kim N, Song MR, Choi M, Ye M, Jung GH, Lee WW, Eom SH, Park CS, Park SG (2016) Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4(+) T-cell activation. Proc Natl Acad Sci USA 113:8771–8776. https://doi.org/10.1073/pnas.1502166113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim HK, Ko TH, Nyamaa B, Lee SR, Kim N, Ko KS, Rhee BD, Park CS, Nilius B, Han J (2016) Cereblon in health and disease. Pflugers Arch 468:1299–1309. https://doi.org/10.1007/s00424-016-1854-1

    Article  CAS  PubMed  Google Scholar 

  61. Kim J, Lee KM, Park CS, Park WJ (2014) Ablation of cereblon attenuates myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 447:649–654. https://doi.org/10.1016/j.bbrc.2014.04.061

    Article  CAS  PubMed  Google Scholar 

  62. Kim YD, Lee KM, Hwang SL, Chang HW, Kim KJ, Harris RA, Choi HS, Choi WS, Lee SE, Park CS (2015) Inhibition of cereblon by fenofibrate ameliorates alcoholic liver disease by enhancing AMPK. Biochim Biophys Acta 1852:2662–2670. https://doi.org/10.1016/j.bbadis.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  63. Koren I, Timms RT, Kula T, Xu Q, Li MZ, Elledge SJ (2018) The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. Cell 173(1622–1635):e1614. https://doi.org/10.1016/j.cell.2018.04.028

    Article  CAS  Google Scholar 

  64. Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, Chamberlain PP, Mani DR, Man HW, Gandhi AK, Svinkina T, Schneider RK, McConkey M, Jaras M, Griffiths E, Wetzler M, Bullinger L, Cathers BE, Carr SA, Chopra R, Ebert BL (2015) Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523:183–188. https://doi.org/10.1038/nature14610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, Ciarlo C, Hartman E, Munshi N, Schenone M, Schreiber SL, Carr SA, Ebert BL (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–305. https://doi.org/10.1126/science.1244851

    Article  CAS  PubMed  Google Scholar 

  66. Kwon E, Li X, Deng Y, Chang HW, Kim DY (2019) AMPK is down-regulated by the CRL4A-CRBN axis through the polyubiquitination of AMPKalpha isoforms. FASEB J 33:6539–6550. https://doi.org/10.1096/fj.201801766RRR

    Article  CAS  PubMed  Google Scholar 

  67. Lee K, Yang S-J, Kim Y, Choi Y, Nam J, Choi C, Choi H-S, Park C-S (2013) Disruption of the cereblon gene enhances hepatic AMPK activity and prevents high-fat diet-induced obesity and insulin resistance in mice. Diabetes 62:1855–1864. https://doi.org/10.2337/db12-1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee KM, Jo S, Kim H, Lee J, Park CS (2011) Functional modulation of AMP-activated protein kinase by cereblon. Biochim Biophys Acta 1813:448–455. https://doi.org/10.1016/j.bbamcr.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  69. Lee KM, Yang SJ, Choi JH, Park CS (2014) Functional effects of a pathogenic mutation in Cereblon (CRBN) on the regulation of protein synthesis via the AMPK-mTOR cascade. J Biol Chem 289:23343–23352. https://doi.org/10.1074/jbc.M113.523423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee KM, Yang SJ, Park S, Choi YD, Shin HK, Pak JH, Park CS, Kim I (2015) Depletion of the cereblon gene activates the unfolded protein response and protects cells from ER stress-induced cell death. Biochem Biophys Res Commun 458:34–39. https://doi.org/10.1016/j.bbrc.2015.01.054

    Article  CAS  PubMed  Google Scholar 

  71. Li L, Xue W, Shen Z, Liu J, Hu M, Cheng Z, Wang Y, Chen Y, Chang H, Liu Y, Liu B, Zhao J (2020) A cereblon modulator CC-885 induces CRBN- and p97-dependent PLK1 degradation and synergizes with volasertib to suppress lung cancer. Mol Ther Oncolytics 18:215–225. https://doi.org/10.1016/j.omto.2020.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li MX, Yang YQ, Zhao QY, Wu Y, Song L, Yang HY, He M, Gao HY, Song BL, Luo J, Rao Y (2020) Degradation versus Inhibition: development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-Hydroxy-3-methylglutaryl coenzyme A reductase. J Med Chem 63:4908–4928. https://doi.org/10.1021/acs.jmedchem.0c00339

    Article  CAS  PubMed  Google Scholar 

  73. Li Z, Lin Y, Song H, Qin X, Yu Z, Zhang Z, Dong G, Li X, Shi X, Du L, Zhao W, Li M (2020) First small-molecule PROTACs for G protein-coupled receptors: inducing alpha 1A-adrenergic receptor degradation. Acta Pharm Sin B 10:1669–1679. https://doi.org/10.1016/j.apsb.2020.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu J, Ye J, Zou X, Xu Z, Feng Y, Chen Z, Li Y, Cang Y (2014) CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun 5:3924. https://doi.org/10.1038/ncomms4924

    Article  CAS  PubMed  Google Scholar 

  75. Liu Z, Hu X, Wang Q, Wu X, Zhang Q, Wei W, Su X, He H, Zhou S, Hu R, Ye T, Zhu Y, Wang N, Yu L (2021) Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for Targeting the noncatalytic activity of EZH2. J Med Chem 64:2829–2848. https://doi.org/10.1021/acs.jmedchem.0c02234

    Article  CAS  PubMed  Google Scholar 

  76. Lohbeck J, Miller AK (2016) Practical synthesis of a phthalimide-based cereblon ligand to enable PROTAC development. Bioorg Med Chem Lett 26:5260–5262. https://doi.org/10.1016/j.bmcl.2016.09.048

    Article  CAS  PubMed  Google Scholar 

  77. Lopez-Girona A, Havens CG, Lu G, Rychak E, Mendy D, Gaffney B, Surka C, Lu CC, Matyskiela M, Khambatta G, Wong L, Hansen J, Pierce DW, Cathers BE, Carmichael J (2019) CC-92480 Is a novel cereblon E3 ligase modulator with enhanced tumoricidal and immunomodulatory activity against sensitive and resistant multiple myeloma cells. Blood 134. https://doi.org/10.1182/blood-2019-124338

  78. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J, Karasawa S, Carmel G, Jackson P, Abbasian M, Mahmoudi A, Cathers B, Rychak E, Gaidarova S, Chen R, Schafer PH, Handa H, Daniel TO, Evans JF, Chopra R (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335. https://doi.org/10.1038/leu.2012.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE, Kaelin WG Jr (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–309. https://doi.org/10.1126/science.1244917

    Article  CAS  PubMed  Google Scholar 

  80. Lu J, Qian Y, Altieri M, Dong H, Wang J, Raina K, Hines J, Winkler JD, Crew AP, Coleman K, Crews CM (2015) Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 22:755–763. https://doi.org/10.1016/j.chembiol.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Luo G, Li Z, Lin X, Li X, Chen Y, Xi K, Xiao M, Wei H, Zhu L, Xiang H (2021) Discovery of an orally active VHL-recruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo. Acta Pharm Sin B 11:1300–1314. https://doi.org/10.1016/j.apsb.2020.11.001

    Article  CAS  PubMed  Google Scholar 

  82. Malta-Vacas J, Ferreira P, Monteiro C, Brito M (2009) Differential expression of GSPT1 GGCn alleles in cancer. Cancer Genet Cytogenet 195:132–142. https://doi.org/10.1016/j.cancergencyto.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  83. Manda S, Lee NK, Oh DC, Lee J (2020) Design, synthesis, and biological evaluation of proteolysis targeting chimeras (PROTACs) for the dual degradation of IGF-1R and Src. Molecules 25. https://doi.org/10.3390/molecules25081948

  84. Manni S, Carrino M, Piazza F (2017) Role of protein kinases CK1alpha and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways. J Hematol Oncol 10:157. https://doi.org/10.1186/s13045-017-0529-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Matyskiela ME, Couto S, Zheng X, Lu G, Hui J, Stamp K, Drew C, Ren Y, Wang M, Carpenter A, Lee CW, Clayton T, Fang W, Lu CC, Riley M, Abdubek P, Blease K, Hartke J, Kumar G, Vessey R, Rolfe M, Hamann LG, Chamberlain PP (2018) SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat Chem Biol 14:981–987. https://doi.org/10.1038/s41589-018-0129-x

    Article  CAS  PubMed  Google Scholar 

  86. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, Miller K, Fang W, Wang NY, Nguyen D, Houston J, Carmel G, Tran T, Riley M, Nosaka L, Lander GC, Gaidarova S, Xu S, Ruchelman AL, Handa H, Carmichael J, Daniel TO, Cathers BE, Lopez-Girona A, Chamberlain PP (2016) A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535:252–257. https://doi.org/10.1038/nature18611

    Article  CAS  PubMed  Google Scholar 

  87. Matyskiela ME, Zhang W, Man HW, Muller G, Khambatta G, Baculi F, Hickman M, LeBrun L, Pagarigan B, Carmel G, Lu CC, Lu G, Riley M, Satoh Y, Schafer P, Daniel TO, Carmichael J, Cathers BE, Chamberlain PP (2018) A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J Med Chem 61:535–542. https://doi.org/10.1021/acs.jmedchem.6b01921

    Article  CAS  PubMed  Google Scholar 

  88. Matyskiela ME, Zhu J, Baughman JM, Clayton T, Slade M, Wong HK, Danga K, Zheng X, Labow M, LeBrun L, Lu G, Chamberlain PP, Thompson JW (2020) Cereblon modulators target ZBTB16 and its oncogenic fusion partners for degradation via distinct structural degrons. ACS Chem Biol 15:3149–3158. https://doi.org/10.1021/acschembio.0c00674

    Article  CAS  PubMed  Google Scholar 

  89. McCoull W, Cheung T, Anderson E, Barton P, Burgess J, Byth K, Cao Q, Castaldi MP, Chen H, Chiarparin E, Carbajo RJ, Code E, Cowan S, Davey PR, Ferguson AD, Fillery S, Fuller NO, Gao N, Hargreaves D, Howard MR, Hu J, Kawatkar A, Kemmitt PD, Leo E, Molina DM, O’Connell N, Petteruti P, Rasmusson T, Raubo P, Rawlins PB, Ricchiuto P, Robb GR, Schenone M, Waring MJ, Zinda M, Fawell S, Wilson DM (2018) Development of a novel B-cell lymphoma 6 (BCL6) PROTAC To provide insight into small molecule targeting of BCL6. ACS Chem Biol 13:3131–3141. https://doi.org/10.1021/acschembio.8b00698

    Article  CAS  PubMed  Google Scholar 

  90. Millrine D, Miyata H, Tei M, Dubey P, Nyati K, Nakahama T, Gemechu Y, Ripley B, Kishimoto T (2016) Immunomodulatory drugs inhibit TLR4-induced type-1 interferon production independently of cereblon via suppression of the TRIF/IRF3 pathway. Int Immunol. https://doi.org/10.1093/intimm/dxw005

    Article  PubMed  Google Scholar 

  91. Min Y, Wi SM, Kang JA, Yang T, Park CS, Park SG, Chung S, Shim JH, Chun E, Lee KY (2016) Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6. Cell Death Dis 7:e2313. https://doi.org/10.1038/cddis.2016.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Minko T (2020) Nanoformulation of BRD4-degrading PROTAC: improving druggability to target the “Undruggable” MYC in pancreatic cancer. Trends Pharmacol Sci 41:684–686. https://doi.org/10.1016/j.tips.2020.08.008

    Article  CAS  PubMed  Google Scholar 

  93. Mo Z, Wood S, Namiranian S, Mizukoshi R, Weng S, Jang IS, Fontanillo C, Baughman JM, Silva-Torres A, Slade M, Khater M, Wang K, Rolfe M, Lu G (2021) Deciphering the mechanisms of CC-122 resistance in DLBCL via a genome-wide CRISPR screen. Blood Adv 5:2027–2039. https://doi.org/10.1182/bloodadvances.2020003431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moon H, Min C, Kim G, Kim D, Kim K, Lee SA, Moon B, Yang S, Lee J, Yang SJ, Cho SK, Lee G, Lee CS, Park CS, Park D (2020) Crbn modulates calcium influx by regulating Orai1 during efferocytosis. Nat Commun 11:5489. https://doi.org/10.1038/s41467-020-19272-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6:369–381. https://doi.org/10.1038/nrc1881

    Article  CAS  PubMed  Google Scholar 

  96. Nakayama Y, Kosek J, Capone L, Hur EM, Schafer PH, Ringheim GE (2017) Aiolos Overexpression in systemic lupus erythematosus B Cell subtypes and BAFF-induced memory B cell differentiation are reduced by CC-220 modulation of cereblon activity. J Immunol 199:2388–2407. https://doi.org/10.4049/jimmunol.1601725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nguyen TV, Lee JE, Sweredoski MJ, Yang SJ, Jeon SJ, Harrison JS, Yim JH, Lee SG, Handa H, Kuhlman B, Jeong JS, Reitsma JM, Park CS, Hess S, Deshaies RJ (2016) Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol Cell 61:809–820. https://doi.org/10.1016/j.molcel.2016.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Papuc SM, Hackmann K, Andrieux J, Vincent-Delorme C, Budisteanu M, Arghir A, Schrock E, Tutulan-Cunita AC, Di Donato N (2015) Microduplications of 3p26.3p26.2 containing CRBN gene in patients with intellectual disability and behavior abnormalities. Eur J Med Genet 58:319–323. https://doi.org/10.1016/j.ejmg.2015.03.005

    Article  PubMed  Google Scholar 

  99. Petzold G, Fischer ES, Thoma NH (2016) Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532:127–130. https://doi.org/10.1038/nature16979

    Article  CAS  PubMed  Google Scholar 

  100. Planells-Cases R, Jentsch TJ (2009) Chloride channelopathies. Biochim Biophys Acta 1792:173–189. https://doi.org/10.1016/j.bbadis.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  101. Rajadhyaksha AM, Ra S, Kishinevsky S, Lee AS, Romanienko P, DuBoff M, Yang C, Zupan B, Byrne M, Daruwalla ZR, Mark W, Kosofsky BE, Toth M, Higgins JJ (2012) Behavioral characterization of cereblon forebrain-specific conditional null mice: a model for human non-syndromic intellectual disability. Behav Brain Res 226:428–434. https://doi.org/10.1016/j.bbr.2011.09.039

    Article  PubMed  Google Scholar 

  102. Rasco DW, Papadopoulos KP, Pourdehnad M, Gandhi AK, Hagner PR, Li Y, Wei X, Chopra R, Hege K, DiMartino J, Shih K (2019) A first-in-human study of novel cereblon modulator avadomide (CC-122) in advanced malignancies. Clin Cancer Res 25:90–98. https://doi.org/10.1158/1078-0432.CCR-18-1203

    Article  CAS  PubMed  Google Scholar 

  103. Robb CM, Contreras JI, Kour S, Taylor MA, Abid M, Sonawane YA, Zahid M, Murry DJ, Natarajan A, Rana S (2017) Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun (Camb) 53:7577–7580. https://doi.org/10.1039/c7cc03879h

    Article  CAS  Google Scholar 

  104. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ (2001) Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci U S A 98:8554–8559. https://doi.org/10.1073/pnas.141230798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, Olah J, Ovadi J, Sippl W, Jung M (2018) Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem 61:482–491. https://doi.org/10.1021/acs.jmedchem.6b01872

    Article  CAS  PubMed  Google Scholar 

  106. Sehgal K, Das R, Zhang L, Verma R, Deng Y, Kocoglu M, Vasquez J, Koduru S, Ren Y, Wang M, Couto S, Breider M, Hansel D, Seropian S, Cooper D, Thakurta A, Yao X, Dhodapkar KM, Dhodapkar MV (2015) Clinical and pharmacodynamic analysis of pomalidomide dosing strategies in myeloma: impact of immune activation and cereblon targets. Blood 125:4042–4051. https://doi.org/10.1182/blood-2014-11-611426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sievers QL, Petzold G, Bunker RD, Renneville A, Słabicki M, Liddicoat BJ, Abdulrahman W, Mikkelsen T, Ebert BL, Thomä NH (2018) Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362

  108. Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, Zhang TH, Huang HT, Lucente DE, Dickerson BC, Mitchison TJ, Fischer ES, Gray NS, Haggarty SJ (2019) Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife 8. https://doi.org/10.7554/eLife.45457

  109. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341:1565–1571. https://doi.org/10.1056/NEJM199911183412102

    Article  CAS  PubMed  Google Scholar 

  110. Smalley JP, Adams GE, Millard CJ, Song Y, Norris JKS, Schwabe JWR, Cowley SM, Hodgkinson JT (2020) PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes. Chem Commun (Camb) 56:4476–4479. https://doi.org/10.1039/d0cc01485k

    Article  CAS  Google Scholar 

  111. Surka C, Jin L, Mbong N, Lu CC, Jang IS, Rychak E, Mendy D, Clayton T, Tindall E, Hsu C, Fontanillo C, Tran E, Contreras A, Ng SWK, Matyskiela M, Wang K, Chamberlain P, Cathers B, Carmichael J, Hansen J, Wang JCY, Minden MD, Fan J, Pierce DW, Pourdehnad M, Rolfe M, Lopez-Girona A, Dick JE, Lu G (2021) CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 137:661–677. https://doi.org/10.1182/blood.2020008676

    Article  CAS  PubMed  Google Scholar 

  112. Tang XQ, Chen XF, Wang NY, Wang XM, Liang ST, Zheng W, Lu YB, Zhao X, Hao DL, Zhang ZQ, Zou MH, Liu DP, Chen HZ (2017) SIRT2 Acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation 136:2051-+. doi:https://doi.org/10.1161/Circulationaha.117.028728

  113. Tateno S, Iida M, Fujii S, Suwa T, Katayama M, Tokuyama H, Yamamoto J, Ito T, Sakamoto S, Handa H, Yamaguchi Y (2020) Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide. Sci Rep 10:4012. https://doi.org/10.1038/s41598-020-61027-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vittal V, Stewart MD, Brzovic PS, Klevit RE (2015) Regulating the regulators: recent revelations in the control of E3 ubiquitin ligases. J Biol Chem 290:21244–21251. https://doi.org/10.1074/jbc.R115.675165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wada T, Asahi T, Sawamura N (2016) Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells. Biochem Biophys Res Commun 477:388–394. https://doi.org/10.1016/j.bbrc.2016.06.091

    Article  CAS  PubMed  Google Scholar 

  116. Wang S, Li Z, Gao S (2021) Key regulators of sensitivity to immunomodulatory drugs in cancer treatment. Biomark Res 9:43. https://doi.org/10.1186/s40364-021-00297-6

    Article  PubMed  PubMed Central  Google Scholar 

  117. Weber ANR, Bittner Z, Liu X, Dang T-M, Radsak MP, Brunner C (2017) Bruton’s tyrosine kinase: an emerging key player in innate immunity. frontiers in immunology 8. doi:https://doi.org/10.3389/fimmu.2017.01454

  118. Wei M, Zhao R, Cao Y, Wei Y, Li M, Dong Z, Liu Y, Ruan H, Li Y, Cao S, Tang Z, Zhou Y, Song W, Wang Y, Wang J, Yang G, Yang C (2021) First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem 209:112903. https://doi.org/10.1016/j.ejmech.2020.112903

    Article  CAS  PubMed  Google Scholar 

  119. Weng G, Shen C, Cao D, Gao J, Dong X, He Q, Yang B, Li D, Wu J, Hou T (2021) PROTAC-DB: an online database of PROTACs. Nucleic Acids Res 49:D1381–D1387. https://doi.org/10.1093/nar/gkaa807

    Article  PubMed  Google Scholar 

  120. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–1381. https://doi.org/10.1126/science.aab1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xin W, Xiaohua N, Peilin C, Xin C, Yaqiong S, Qihan W (2008) Primary function analysis of human mental retardation related gene CRBN. Mol Biol Rep 35:251–256. https://doi.org/10.1007/s11033-007-9077-3

    Article  CAS  PubMed  Google Scholar 

  122. Xu Q, Hou YX, Langlais P, Erickson P, Zhu J, Shi CX, Luo M, Zhu Y, Xu Y, Mandarino LJ, Stewart K, Chang XB (2016) Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival. BMC Cancer 16:297. https://doi.org/10.1186/s12885-016-2331-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamamoto J, Suwa T, Murase Y, Tateno S, Mizutome H, Asatsuma-Okumura T, Shimizu N, Kishi T, Momose S, Kizaki M, Ito T, Yamaguchi Y, Handa H (2020) ARID2 is a pomalidomide-dependent CRL4(CRBN) substrate in multiple myeloma cells. Nat Chem Biol 16:1208–1217. https://doi.org/10.1038/s41589-020-0645-3

    Article  CAS  PubMed  Google Scholar 

  124. Yamanaka S, Murai H, Saito D, Abe G, Tokunaga E, Iwasaki T, Takahashi H, Takeda H, Suzuki T, Shibata N, Tamura K, Sawasaki T (2021) Thalidomide and its metabolite 5-hydroxythalidomide induce teratogenicity via the cereblon neosubstrate PLZF. EMBO J 40:e105375. https://doi.org/10.15252/embj.2020105375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yan G, Zhong X, Yue L, Pu C, Shan H, Lan S, Zhou M, Hou X, Yang J, Li R (2021) Discovery of a PROTAC targeting ALK with in vivo activity. Eur J Med Chem 212:113150. https://doi.org/10.1016/j.ejmech.2020.113150

    Article  CAS  PubMed  Google Scholar 

  126. Yang H, Lv W, He M, Deng H, Li H, Wu W, Rao Y (2019) Plasticity in designing PROTACs for selective and potent degradation of HDAC6. Chem Commun (Camb) 55:14848–14851. https://doi.org/10.1039/c9cc08509b

    Article  CAS  Google Scholar 

  127. Yang J, Huang M, Zhou L, He X, Jiang X, Zhang Y, Xu G (2018) Cereblon suppresses the lipopolysaccharide-induced inflammatory response by promoting the ubiquitination and degradation of c-Jun. J Biol Chem 293:10141–10157. https://doi.org/10.1074/jbc.RA118.002246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yang SJ, Jeon S, Baek JW, Lee KM, Park CS (2021) Regulation of AMPK activity by CRBN is independent of the thalidomide-CRL4(CRBN) protein degradation axis. Pharmaceuticals (Basel) 14. https://doi.org/10.3390/ph14060512

  129. Yang SJ, Jeon SJ, Van Nguyen T, Deshaies RJ, Park CS, Lee KM (2020) Ubiquitin-dependent proteasomal degradation of AMPK gamma subunit by Cereblon inhibits AMPK activity. Biochim Biophys Acta Mol Cell Res 1867:118729. https://doi.org/10.1016/j.bbamcr.2020.118729

    Article  CAS  PubMed  Google Scholar 

  130. Yang X, Wang Z, Pei Y, Song N, Xu L, Feng B, Wang H, Luo X, Hu X, Qiu X, Feng H, Yang Y, Zhou Y, Li J, Zhou B (2021) Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur J Med Chem 218:113341. https://doi.org/10.1016/j.ejmech.2021.113341

    Article  CAS  PubMed  Google Scholar 

  131. Yano M, Kobayashi S, Kohno M, Doi M, Tokuhisa T, Okuda S, Suetsugu M, Hisaoka T, Obayashi M, Ohkusa T, Kohno M, Matsuzaki M (2003) FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107:477–484. doi:https://doi.org/10.1161/01.cir.0000044917.74408.be

  132. Yao C, Guo X, Yao WX, Zhang C (2018) Cereblon (CRBN) deletion reverses streptozotocin induced diabetic osteoporosis in mice. Biochem Biophys Res Commun 496:967–974. https://doi.org/10.1016/j.bbrc.2018.01.095

    Article  CAS  PubMed  Google Scholar 

  133. Zhang LH, Kosek J, Wang M, Heise C, Schafer PH, Chopra R (2013) Lenalidomide efficacy in activated B-cell-like subtype diffuse large B-cell lymphoma is dependent upon IRF4 and cereblon expression. Br J Haematol 160:487–502. https://doi.org/10.1111/bjh.12172

    Article  CAS  PubMed  Google Scholar 

  134. Zhang X, Thummuri D, He Y, Liu X, Zhang P, Zhou D, Zheng G (2019) Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-XL. Chem Commun (Camb) 55:14765–14768. https://doi.org/10.1039/c9cc07217a

    Article  CAS  Google Scholar 

  135. Zhang X, Thummuri D, Liu X, Hu W, Zhang P, Khan S, Yuan Y, Zhou D, Zheng G (2020) Discovery of PROTAC BCL-XL degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem 192:112186. https://doi.org/10.1016/j.ejmech.2020.112186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao B, Burgess K (2019) TrkC-Targeted Kinase Inhibitors And PROTACs. Mol Pharm 16:4313–4318. https://doi.org/10.1021/acs.molpharmaceut.9b00673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhao HY, Yang XY, Lei H, Xi XX, Lu SM, Zhang JJ, Xin M, Zhang SQ (2020) Discovery of potent small molecule PROTACs targeting mutant EGFR. Eur J Med Chem 208:112781. https://doi.org/10.1016/j.ejmech.2020.112781

    Article  CAS  PubMed  Google Scholar 

  138. Zhao M, Hu M, Chen Y, Liu H, Chen Y, Liu B, Fang B (2021) Cereblon modulator CC-885 induces CRBN-dependent ubiquitination and degradation of CDK4 in multiple myeloma. Biochem Biophys Res Commun 549:150–156. https://doi.org/10.1016/j.bbrc.2021.02.110

    Article  CAS  PubMed  Google Scholar 

  139. Zheng M, Huo J, Gu X, Wang Y, Wu C, Zhang Q, Wang W, Liu Y, Liu Y, Zhou X, Chen L, Zhou Y, Li H (2021) Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP. J Med Chem 64:7839–7852. https://doi.org/10.1021/acs.jmedchem.1c00649

    Article  CAS  PubMed  Google Scholar 

  140. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, Chang XB, Bjorklund CC, Fonseca R, Bergsagel PL, Orlowski RZ, Stewart AK (2011) Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 118:4771–4779. https://doi.org/10.1182/blood-2011-05-356063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu YX, Braggio E, Shi CX, Kortuem KM, Bruins LA, Schmidt JE, Chang XB, Langlais P, Luo M, Jedlowski P, LaPlant B, Laumann K, Fonseca R, Bergsagel PL, Mikhael J, Lacy M, Champion MD, Stewart AK (2014) Identification of cereblon-binding proteins and relationship with response and survival after IMiDs in multiple myeloma. Blood 124:536–545. https://doi.org/10.1182/blood-2014-02-557819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, Smith J, Zhu H, Farley KA, Ding W, Schiemer J, Feng X, Chang JS, Uccello DP, Young JA, Garcia-Irrizary CN, Czabaniuk L, Schuff B, Oliver R, Montgomery J, Hayward MM, Coe J, Chen J, Niosi M, Luthra S, Shah JC, El-Kattan A, Qiu X, West GM, Noe MC, Shanmugasundaram V, Gilbert AM, Brown MF, Calabrese MF (2018) Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc Natl Acad Sci U S A 115:E7285–E7292. https://doi.org/10.1073/pnas.1803662115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all scientists of Cereblon Open Research Excellence (CORE) for their expertise and achievements throughout all aspects in the research field of cereblon.

Funding

This work was supported by the Basic Research Lab program and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (2020R1A4A1018943, 2018R1A2A3074998, and 2018R1D1A1A09081767), and by the 2018 Inje University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Han.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.K., Seol, J.E., Ahn, S.W. et al. Cereblon: promise and challenges for combating human diseases. Pflugers Arch - Eur J Physiol 473, 1695–1711 (2021). https://doi.org/10.1007/s00424-021-02624-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02624-0

Keywords

Navigation