Skip to main content

Advertisement

Log in

Investigation into the difference in mitochondrial-cytosolic calcium coupling between adult cardiomyocyte and hiPSC-CM using a novel multifunctional genetic probe

  • Original Article
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Ca2+ cycling plays a critical role in regulating cardiomyocyte (CM) function under both physiological and pathological conditions. Mitochondria have been implicated in Ca2+ handling in adult cardiomyocytes (ACMs). However, little is known about their role in the regulation of Ca2+ dynamics in human-induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs). In the present study, we developed a multifunctional genetically encoded Ca2+ probe capable of simultaneously measuring cytosolic and mitochondrial Ca2+ in real time. Using this novel probe, we determined and compared mitochondrial Ca2+ activity and the coupling with cytosolic Ca2+ dynamics in hiPSC-CMs and ACMs. Our data showed that while ACMs displayed a highly coordinated beat-by-beat response in mitochondrial Ca2+ in sync with cytosolic Ca2+, hiPSC-CMs showed high cell-wide variability in mitochondrial Ca2+ activity that is poorly coordinated with cytosolic Ca2+. We then revealed that mitochondrial-sarcoplasmic reticulum (SR) tethering, as well as the inter-mitochondrial network connection, is underdeveloped in hiPSC-CM compared to ACM, which may underlie the observed spatiotemporal decoupling between cytosolic and mitochondrial Ca2+ dynamics. Finally, we showed that knockdown of mitofusin-2 (Mfn2), a protein tethering mitochondria and SR, led to reduced cytosolic-mitochondrial Ca2+ coupling in ACMs, albeit to a lesser degree compared to hiPSC-CMs, suggesting that Mfn2 is a potential engineering target for improving mitochondrial-cytosolic Ca2+ coupling in hiPSC-CMs. Physiological relevance: The present study will advance our understanding of the role of mitochondria in Ca2+ handling and cycling in CMs, and guide the development of hiPSC-CMs for healing injured hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akerboom J, Rivera JDV, Guilbe MMR, Malave ECA, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational designs. J Biol Chem 284:6455–6464. https://doi.org/10.1074/jbc.M807657200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akimzhanov AM, Boehning D (2011) Monitoring dynamic changes in mitochondrial calcium levels during apoptosis using a genetically encoded calcium sensor. J Vis Exp 50:2579. https://doi.org/10.3791/2579

    Article  CAS  Google Scholar 

  3. Ben-Ari M, Naor S, Zeevi-Levin N, Schick R, Jehuda RB, Reiter I, Raveh A, Grijnevitch I, Barak O, Rosen MR, Weissman A, Binah O (2016) Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes. Heart Rhythm 13:2379–2387. https://doi.org/10.1016/j.hrthm.2016.08.045

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carlotta Giorgi SM, Pinton P (2018) The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 19:713–730. https://doi.org/10.1038/s41580-018-0052-8

    Article  CAS  PubMed  Google Scholar 

  5. Chen M, Wang Y, Hou T, Zhang H, Qu A, Wang X (2011) Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2. Acta Biochimica et Biophysica Sinica 43:822–830. https://doi.org/10.1093/abbs/gmr075

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Csordás G, Jowdy C, Schneider TG, Csordás N, Wang W, Liu Y, Kohlhaas M, Meiser M, Bergem S, Nerbonne JM, Dorn GW, Maack C (2012) Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca<sup>2+</sup> crosstalk. Circulation Research 111:863-875. doi:doi:10.1161/CIRCRESAHA.112.266585

  7. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cortes D, McTiernan CD, Ruel M, Franco W, Chu C, Liang W, Suuronen EJ, Alarcon EI (2020) BeaTS-α an open access 3D printed device for in vitro electromechanical stimulation of human induced pluripotent stem cells. Scientific Reports 10:11274. https://doi.org/10.1038/s41598-020-67169-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai D-F, Danoviz ME, Wiczer B, Laflamme MA, Tian R (2017) Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int 2017:5153625–5153610. https://doi.org/10.1155/2017/5153625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS (2016) Sensitive red protein calcium indicators for imaging neural activity. Elife 5. doi:https://doi.org/10.7554/eLife.12727

  11. Davidson SM, Duchen MR (2012) Imaging mitochondrial calcium signalling with fluorescent probes and single or two photon confocal microscopy. Methods Mol Biol 810:219–234

    Article  CAS  PubMed  Google Scholar 

  12. Denning C, Borgdorff V, Crutchley J, Firth KS, George V, Kalra S, Kondrashov A, Hoang MD, Mosqueira D, Patel A, Prodanov L, Rajamohan D, Skarnes WC, Smith JG, Young LE (2016) Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta 1863:1728–1748. https://doi.org/10.1016/j.bbamcr.2015.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dorn GW II, Scorrano L (2011) Two close, too close: sarcoplasmic reticulum-mitochodrial cross talk and cardiomyocyte fate. Circ Res 107:689–699. https://doi.org/10.1161/CIRCRESAHA.110.225714

    Article  CAS  Google Scholar 

  14. Dorn GW II, Song M, Walsh K (2016) Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. J Mol Cell Cardiol 78:123–128. https://doi.org/10.1016/j.yjmcc.2014.09.015

    Article  CAS  Google Scholar 

  15. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. Journal of Physiology 529:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ernst P, Xu N, Qu J, Chen H, Goldberg MS, Darley-Usmar V, Zhang JJ, O’Rourke B, Liu X, Zhou L (2019) Precisely control mitochondria with light to manipulate cell fate decision. Biophysical Journal 117:631–645. https://doi.org/10.1016/j.bpj.2019.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B, Zhang H, Briganti F, Schweizer M, Hegyi B, Liao Z, Pölönen R-P, Ginsburg KS, Lam CK, Serrano R, Wahlquist C, Kreymerman A, Vu M, Amatya PL, Behrens CS, Ranjbarvaziri S, Maas RGC, Greenhaw M, Bernstein D, Wu JC, Bers DM, Eschenhagen T, Metallo CM, Mercola M (2020) Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep 32:107925. https://doi.org/10.1016/j.celrep.2020.107925

    Article  CAS  PubMed  Google Scholar 

  18. Gherghiceanu M, Barad L, Novak A, Reiter I, Itskovitz-Eldor J, Binah O, Popescu LM (2011) Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J Cell Mol Med 15:2539–2551. https://doi.org/10.1111/j.1582-4934.2011.01417.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goh KY, Qu J, Hong H, Liu T, Dell’Italia LJ, Wu Y, O’Rourke B, Zhou L (2016) Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes. Cardiovasc Res 109:79–89. https://doi.org/10.1093/cvr/cvv230

    Article  CAS  PubMed  Google Scholar 

  20. Goh KY, He L, Song J, Jinno M, Rogers AJ, Sethu P, Halade GV, Rajasekaran NS, Liu X, Prabhu SD, Darley-Usmar V, Wende AR, Zhou L (2019) Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biol 21:101100. https://doi.org/10.1016/j.redox.2019.101100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goversen B, Becker N, Stoelzle-Feix S, Obergrussberger A, Vos MA, van Veen TAB, Fertig N, de Boer TP (2017) A hybrid model for safety pharmacology on an automated patch clamp platform: using dynamic clamp to join iPSC-derived cardiomyocytes and simulations of Ik1 ion channels in real-time. Front Physiol 8:1094. https://doi.org/10.3389/fphys.2017.01094

    Article  PubMed  Google Scholar 

  22. Guo L, Eldridge S, Furniss M, Mussio J, Davis M (2015) Use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to monitor compound effects on cardiac myocyte signaling pathways. Curr Protoc Chem Biol 7:141–185. https://doi.org/10.1002/9780470559277.ch150035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hasenfuss G, Mulieri LA, Blanchard EM, Holubarsch C, Leavitt BJ, Ittleman F, Alpert NR (1991) Energetics of isometric force development in control and volume-overload human myocardium. Comparison with animal species. Circ Res 68:836–846. https://doi.org/10.1161/01.res.68.3.836

    Article  CAS  PubMed  Google Scholar 

  24. Hwang HS, Kryshtal DO, Feaster TK, Sanchez-Freire V, Zhang J, Kamp TJ, Hong CC, Wu JC, Knollmann BC (2015) Comparable calcium handling of human iPSC-derived cardiomyocytes generated by multiple laboratories. J Mol Cell Cardiol 85:79–88. https://doi.org/10.1016/j.yjmcc.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G, Schiller J, Gepstein L (2011) Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One 6:e18037. https://doi.org/10.1371/journal.pone.0018037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117:80–88. https://doi.org/10.1161/CIRCRESAHA.117.305365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim S, Song J, Ernst P, Latimer MN, Ha CM, Goh KY, Ma W, Rajasekaran NS, Zhang J, Liu X, Prabhu SD, Qin G, Wende AR, Young ME, Zhou L (2020) MitoQ regulates redox-related noncoding RNAs to preserve mitochondrial network integrity in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 318:H682–H695. https://doi.org/10.1152/ajpheart.00617.2019

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koivumaki JT, Naumenko N, Tuomainen T, Takalo J, Oksanen M, Puttonen KA, Lehtonen S, Kuusisto J, Laakso M, Koistinaho J, Tavi P (2018) Structural immaturity of human iPSC-derived cardiomyocytes: in silico investigation of effects on function and disease modeling. Front Physiol 9. doi:https://doi.org/10.3389/fphys.2018.00080

  29. Leonard A, Bertero A, Powers JD, Beussman KM, Bhandari S, Regnier M, Murry CE, Sniadecki NJ (2018) Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol 118:147–158. https://doi.org/10.1016/j.yjmcc.2018.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Q, Zhou LY, Gao GF, Jiao JQ, Li PF (2012) Mitochondrial network in the heart. Protein Cell 3:410–418. https://doi.org/10.1007/s13238-012-2921-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Q, Ni RR, Hong H, Goh KY, Rossi M, Fast VG, Zhou L (2017) Electrophysiological properties and viability of neonatal rat ventricular myocyte cultures with inducible ChR2 expression. Sci Rep 7:1531. https://doi.org/10.1038/s41598-017-01723-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56:130–140. https://doi.org/10.1097/FJC.0b013e3181e74a14

    Article  CAS  PubMed  Google Scholar 

  33. Maxwell JT, Tsai C-H, Mohiuddin TA, Kwong JQ (2018) Analyses of mitochondrial calcium influx in isolated mitochondria and cultured cells. J Vis Exp 134:57225. https://doi.org/10.3791/57225

    Article  CAS  Google Scholar 

  34. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. https://doi.org/10.1038/42264

    Article  CAS  PubMed  Google Scholar 

  35. Murphy JF, Mayourian J, Stillitano F, Munawar S, Broughton KM, Agullo-Pascual E, Sussman MA, Hajjar RJ, Costa KD, Turnbull IC (2019) Adult human cardiac stem cell supplementation effectively increases contraction function and maturation in human engineered cardiac tissues. Stem Cell Res Ther 10:373. https://doi.org/10.1186/s13287-019-1486-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pérez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: properties and evaluation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833:1787–1797. https://doi.org/10.1016/j.bbamcr.2013.01.011

  37. Pioner JM, Santini L, Palandri C, Martella D, Lupi F, Langione M, Querceto S, Grandinetti B, Balducci V, Benzoni P, Landi S, Barbuti A, Lupi FF, Boarino L, Sartiani L, Tesi C, Mack DL, Regnier M, Cerbai E, Parmeggiani C, Poggesi C, Ferrantini C, Coppini R (2019) Optical investigation of action potential and calcium handling maturation of hiPSC-cardiomyocytes on biomemetic substrates. Int J Mol Sci 10. https://doi.org/10.3390/ijms20153799

  38. Romoser VA, Hinkle PM, Persechini A (1997) Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem 272:13270–13274. https://doi.org/10.1074/jbc.272.20.13270

    Article  CAS  PubMed  Google Scholar 

  39. Seidlmayer LK, Mages C, Berbner A, Eder-Negrin P, Arias-Loza PA, Kaspar M, Song M, D GW II, Kohlhaas M, Frantz S, Maack C, Gerull B, Dedkova EN (2019) Mitofusin 2 is essential for IP3-mediated SR/mitochondria metabolic feedback in ventricular myocytes. Front Physiol 10:733. https://doi.org/10.3389/fphys.2019.00733

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith AST, Macadangdang J, Leung W, Laflamme MA, Kim D-H (2017) Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening. Biotechnol Adv 35:77–94. https://doi.org/10.1016/j.biotechadv.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki J, Kanemaru K, Iino M (2015) Genetically encoded fluorescent indicators for organellar calcium imaging. Biophysical Journal 111:1119–1131. https://doi.org/10.1016/j.bpj.2016.04.054

    Article  CAS  Google Scholar 

  42. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  43. Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondria. Cell Calcium 52:28–35. https://doi.org/10.1016/j.ceca.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Liao M-LC, Levent E, Raad F, Zeidler S, Wingender E, RIegler J, Wang M, Gold JD, Kehat I, Wettmer E, Ravens U, Dierickx P, Laake LWV, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmerman W-H (2017) Defined enginerred human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135:1832–1847. https://doi.org/10.1161/CIRCULATIONAHA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tu C, Chao BS, Wu JC (2018) Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ Res 123:512–514. https://doi.org/10.1161/CIRCRESAHA.118.313472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vendelin M, Beraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA (2005) Mitochondrial regular arrangement in muscle cells: a “crystal-like” pattern. Am J Physiol Cell Physiol 288:C757–C767. https://doi.org/10.1152/ajpcell.00281.2004

    Article  CAS  PubMed  Google Scholar 

  47. Wang Q, Shui B, Kotlikoff MI, Sondermann H (2008) Structural basis for calcium sensing by GCaMP2. Structure 16:1817–1827. https://doi.org/10.1016/j.str.2008.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296–304. https://doi.org/10.1016/j.yjmcc.2014.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang J, He J, Ismail M, Tweeten S, Zeng F, Gao L, Ballinger S, Young M, Prabhu SD, Rowe GC, Zhang J, Zhou L, Xie M (2019) HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 130:36–48. https://doi.org/10.1016/j.yjmcc.2019.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang X-H, Wei H, Saric T, Hescheler J, Cleemann L, Morad M (2016) Regionally diverse mitochondrial calcium signaling regulates spontaneous pacing in developing cardiomyocytes. Cell Calcium 57:321–336. https://doi.org/10.1016/j.ceca.2015.02.003

    Article  CAS  Google Scholar 

  51. Zhao Z, Gordan R, Wen H, Fefelova N, Zang WJ, Xie LH (2013) Modulation of intracellular calcium waves and triggered activities by mitochondrial ca flux in mouse cardiomyocytes. PLoS One 8:e80574. https://doi.org/10.1371/journal.pone.0080574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao M, Fan C, Ernst PJ, Tang Y, Zhu H, Mattapally S, Oduk Y, Borovjagin AV, Zhou L, Zhang J, Zhu W (2018) Y-27632 preconditioning enhances transplantation of human-induced pluripotent stem cell-derived cardiomyocytes in myocardial infarction mice. Cardiovascular research 115:343–356. https://doi.org/10.1093/cvr/cvy207

    Article  CAS  PubMed Central  Google Scholar 

  53. Zhong C, Schleifenbaum J (2019) Genetically encoded calcium indicators: a new tool in renal hypertension research. Frontiers in Medicine 6. doi:https://doi.org/10.3389/fmed.2019.00128

  54. Zhou L, O’Rourke B (2012) Cardiac mitochondrial network excitability: insights from computational analysis. Am J Physiol Heart Circ Physiol 302:H2178–H2189. https://doi.org/10.1152/ajpheart.01073.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC (2007) Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. J Physiol 579:811–821. https://doi.org/10.1113/jphysiol.2006.123828

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Institutes of Health (R01s HL121206 and HL128044 to LZ) and American Heart Association Predoctoral Fellowship (18PRE34060188 to PE).

Author information

Authors and Affiliations

Authors

Contributions

PE, KS, and JG performed experiments and analyzed data. KC, JH and MX and YT and JJZ contributed to the adult mouse CM isolation, NRVM isolation, and iPSC-CM differentiation, respectively. PE, XL, and LZ designed the study. PE, XL, and LZ prepared the manuscript.

Corresponding author

Correspondence to Lufang Zhou.

Ethics declarations

Informed consent

All authors declared their informed consent.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Calcium Signal Dynamics in Cardiac Myocytes and Fibroblasts: Mechanisms in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ernst, P., Chen, K., Tang, Y. et al. Investigation into the difference in mitochondrial-cytosolic calcium coupling between adult cardiomyocyte and hiPSC-CM using a novel multifunctional genetic probe. Pflugers Arch - Eur J Physiol 473, 447–459 (2021). https://doi.org/10.1007/s00424-021-02524-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02524-3

Keywords

Navigation