Skip to main content
Log in

tDCS effects on brain network properties during physiological aging

  • Original Article
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Brain neural networks undergo relevant changes during physiological aging, which affect cognitive and behavioral functions. Currently, non-invasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS), are proposed as tools able to modulate cognitive functions in brain aging, acting on networks properties and connectivity. Segregation and integration measures are used and evaluated by means of local clustering (segregation) and path length (integration). Moreover, to assess the balancing between them, the Small World (SW) parameter is employed, evaluating functional coupling in normal brain aging and in pathological conditions including neurodegeneration. The aim of this study was to systematically investigate the tDCS-induced effects on brain network proprieties in physiological aging. In order to reach this aim, cortical activity was acquired from healthy young and elderly subjects by means of EEG recorded before, during, and after anodal, cathodal, and sham tDCS sessions. Specifically, the aim to exploring tDCS polarity-dependent changes in the age-dependent network dynamics was based on a network graph theory application on two groups divided in young and elderly subjects. Eighteen healthy young (9 females; mean age = 24.7, SD = 3.2) and fifteen elderly subjects (9 females; mean = 70.1, SD = 5.1) were enrolled. Each participant received anodal, cathodal, or sham tDCS over the left prefrontal cortex (PFC) in three separate experimental sessions performed 1 week apart. SW was computed to evaluate brain network organization. The present study demonstrates that tDCS delivered in PFC can change brain network dynamics, and tDCS-EEG coregistration data can be analyzed using graph theory to understand the induced effects of different tDCS polarities in physiological and pathological brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data will be available upon request.

References

  1. Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W (2017) Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 128:1774–1809. https://doi.org/10.1016/j.clinph.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antonenko D, Schubert F, Bohm F, Ittermann B, Aydin S, Hayek D, Grittner U, Flöel A (2017) tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. J Neurosci 37:4065–4073. https://doi.org/10.1523/JNEUROSCI.0079-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Babiloni C, Vecchio F, Lizio R, Ferri R, Rodriguez G, Marzano N, Frisoni GB, Rossini PM (2011) Resting state cortical rhythms in mild cognitive impairment and Alzheimer’s disease: electroencephalographic evidence. J Alzheimers Dis 26(Suppl 3):201–214. https://doi.org/10.3233/jad-2011-0051

    Article  PubMed  Google Scholar 

  4. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12:512–523. https://doi.org/10.1177/1073858406293182

    Article  PubMed  Google Scholar 

  5. Cespón J, Rodella C, Rossini PM, Miniussi C, Pellicciari MC (2017) Anodal transcranial direct current stimulation promotes frontal compensatory mechanisms in healthy elderly subjects. Front Aging Neurosci 9:420. https://doi.org/10.3389/fnagi.2017.00420

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cespón J, Miniussi C, Pellicciari MC (2018) Interventional programmes to improve cognition during healthy and pathological ageing: cortical modulations and evidence for brain plasticity. Ageing Res Rev 43:81–98. https://doi.org/10.1016/j.arr.2018.03.001

    Article  PubMed  Google Scholar 

  7. de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier WM, Scheltens P, Stam CJ (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci 10:101. https://doi.org/10.1186/1471-2202-10-101

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fertonani A, Miniussi C (2017) Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23:109–123. https://doi.org/10.1177/1073858416631966

    Article  PubMed  Google Scholar 

  9. Friston KJ (2004) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78. https://doi.org/10.1002/hbm.460020107

    Article  Google Scholar 

  10. Gordon PC, Zrenner C, Desideri D, Belardinelli P, Zrenner B, Brunoni AR, Ziemann U (2018) Modulation of cortical responses by transcranial direct current stimulation of dorsolateral prefrontal cortex: a resting-state EEG and TMS-EEG study. Brain Stimul 11:1024–1032. https://doi.org/10.1016/j.brs.2018.06.004

    Article  PubMed  Google Scholar 

  11. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195

    Article  CAS  Google Scholar 

  12. Kooi KA (1922) Fundamentals of electroencephalography. Medical Dept., Harper & Row, New York

    Google Scholar 

  13. Luft CD, Pereda E, Banissy MJ, Bhattacharya J (2014) Best of both worlds: promise of combining brain stimulation and brain connectome. Front Syst Neurosci 8:132. https://doi.org/10.3389/fnsys.2014.00132

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mancini M, Brignani D, Conforto S, Mauri P, Miniussi C, Pellicciari MC (2016) Assessing cortical synchronization during transcranial direct current stimulation: a graph-theoretical analysis. Neuroimage 140:57–65. https://doi.org/10.1016/j.neuroimage.2016.06.003

    Article  PubMed  Google Scholar 

  15. Miraglia F, Vecchio F, Bramanti P, Rossini PM (2016) EEG characteristics in “eyes-open” versus “eyes-closed” conditions: small-world network architecture in healthy aging and age-related brain degeneration. Clin Neurophysiol 127:1261–1268. https://doi.org/10.1016/j.clinph.2015.07.040

    Article  PubMed  Google Scholar 

  16. Miraglia F, Vecchio F, Rossini PM (2017) Searching for signs of aging and dementia in EEG through network analysis. Behav Brain Res 317:292–300. https://doi.org/10.1016/j.bbr.2016.09.057

    Article  PubMed  Google Scholar 

  17. Niedermeyer E, Lopes da Silva F (1993) Electroencephalography, basic principles, clinical applications and related fields. Oxford University Press, Oxford

  18. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    PubMed  Google Scholar 

  19. Pascual-Marqui RD (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. eprint arXiv:0711.1455

  20. Pellicciari MC, Brignani D, Miniussi C (2013) Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. Neuroimage 83:569–580. https://doi.org/10.1016/j.neuroimage.2013.06.076

    Article  PubMed  Google Scholar 

  21. Rossini PM, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G, Ferreri F, Frisoni G, Chiovenda P, Miniussi C, Parisi L, Tombini M, Vecchio F, Babiloni C (2006) Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience 143:793–803. https://doi.org/10.1016/j.neuroscience.2006.08.049

    Article  CAS  PubMed  Google Scholar 

  22. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  23. Schürmann M, Başar E (2001) Functional aspects of alpha oscillations in the EEG. Int J Psychophysiol 39:151–158

    Article  Google Scholar 

  24. Shilo G, Lavidor M (2019) Non-linear effects of cathodal transcranial direct current stimulation (tDCS) of the primary motor cortex on implicit motor learning. Exp Brain Res 237:919–925. https://doi.org/10.1007/s00221-019-05477-3

    Article  PubMed  Google Scholar 

  25. Summers JJ, Kang N, Cauraugh JH (2016) Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Res Rev 25:42–54. https://doi.org/10.1016/j.arr.2015.11.004

    Article  PubMed  Google Scholar 

  26. Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E (2016) Non-invasive brain stimulation of the aging brain: state of the art and future perspectives. Ageing Res Rev 29:66–89. https://doi.org/10.1016/j.arr.2016.05.006

    Article  PubMed  Google Scholar 

  27. Vecchio F, Miraglia F, Bramanti P, Rossini PM (2014) Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis 41:1239–1249. https://doi.org/10.3233/JAD-140090

    Article  PubMed  Google Scholar 

  28. Vecchio F, Miraglia F, Marra C, Quaranta D, Vita MG, Bramanti P, Rossini PM (2014) Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis 41:113–127. https://doi.org/10.3233/jad-132087

    Article  PubMed  Google Scholar 

  29. Vecchio F, Pellicciari MC, Miraglia F, Brignani D, Miniussi C, Rossini PM (2016) Effects of transcranial direct current stimulation on the functional coupling of the sensorimotor cortical network. Neuroimage 140:50–56. https://doi.org/10.1016/j.neuroimage.2016.01.051

    Article  PubMed  Google Scholar 

  30. Vecchio F, Miraglia F, Piludu F, Granata G, Romanello R, Caulo M, Onofrj V, Bramanti P, Colosimo C, Rossini PM (2017) “Small world” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data. Brain Imaging Behav 11:473–485. https://doi.org/10.1007/s11682-016-9528-3

    Article  PubMed  Google Scholar 

  31. Vecchio F, Di Iorio R, Miraglia F, Granata G, Romanello R, Bramanti P, Rossini PM (2018) Transcranial direct current stimulation generates a transient increase of small-world in brain connectivity: an EEG graph theoretical analysis. Exp Brain Res 236:1117–1127. https://doi.org/10.1007/s00221-018-5200-z

    Article  PubMed  Google Scholar 

  32. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. https://doi.org/10.1038/30918

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and for the project GR-2011-02349998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Vecchio.

Ethics declarations

The data adopted by the authors comply with the requirements of the institute and comply with institutional ethics approval.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Aging Brain in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchio, F., Miraglia, F., Rodella, C. et al. tDCS effects on brain network properties during physiological aging. Pflugers Arch - Eur J Physiol 473, 785–792 (2021). https://doi.org/10.1007/s00424-020-02428-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02428-8

Keywords

Navigation