Skip to main content
Log in

Wall stretch and thromboxane A2 activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Pulmonary arteries (PAs) have high compliance, buffering the wide ranges of blood flow. Here, we addressed a hypothesis that PA smooth muscle cells (PASMCs) express nitric oxide synthases (NOS) that might be activated by mechanical stress and vasoactive agonists. In the myograph study of endothelium-denuded rat PAs, NOS inhibition (L-NAME) induced strong contraction (96 % of 80 mM KCl-induced contraction (80K)) in the presence of 5 nM U46619 (thromboxane A2 (TXA2) analogue) with relatively high basal stretch (2.94 mN, S(+)). With lower basal stretch (0.98 mN, S(−)), however, L-NAME application following U46619 (TXA2/L-NAME) induced weak contraction (27 % of 80K). Inhibitors of nNOS and iNOS had no such effect in S(+) PAs. In endothelium-denuded S(+) mesenteric and renal arteries, TXA2/L-NAME-induced contraction was only 18 and 21 % of 80K, respectively. Expression of endothelial-type NOS (eNOS) in rat PASMCs was confirmed by RT-PCR and immunohistochemistry. Even in S(−) PAs, pretreatment with H2O2 (0.1–10 μM) effectively increased the sensitivity to TXA2/L-NAME (105 % of 80K). Vice versa, NADPH oxidase inhibitors, reactive oxygen species scavengers, or an Akt inhibitor (SC-66) suppressed TXA2/L-NAME-induced contraction in S(+) PAs. In a human PASMC line, immunoblot analysis showed the following: (1) eNOS expression, (2) Ser1177 phosphorylation by U46619 and H2O2, and (3) Akt activation (Ser473 phosphorylation) by U46619. In the cell-attached patch clamp study, H2O2 facilitated membrane stretch-activated cation channels in rat PASMCs. Taken together, the muscular eNOS in PAs can be activated by TXA2 and mechanical stress via H2O2 and Akt-mediated signaling, which may counterbalance the contractile signals from TXA2 and mechanical stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baek EB, Kim SJ (2011) Mechanisms of myogenic response: Ca2+-dependent and -independent signaling. J Smooth Muscle Res 47:55–65

    Article  PubMed  Google Scholar 

  2. Barbera JA, Peinado VI, Santos S, Ramirez J, Roca J, Rodriguez-Roisin R (2001) Reduced expression of endothelial nitric oxide synthase in pulmonary arteries of smokers. Am J Respir Crit Care Med 164:709–713

    Article  CAS  PubMed  Google Scholar 

  3. Barbosa VA, Luciano TF, Marques SO, Vitto MF, Souza DR, Silva LA, Santos JP, Moreira JC, Dal-Pizzol F, Lira FS, Pinho RA, De Souza CT (2013) Acute exercise induce endothelial nitric oxide synthase phosphorylation via Akt and AMP-activated protein kinase in aorta of rats: role of reactive oxygen species. Int J Cardiol 167:2983–2988

    Article  PubMed  Google Scholar 

  4. Belik J (1994) Myogenic response in large pulmonary arteries and its ontogenesis. Pediatr Res 36:34–40

    Article  CAS  PubMed  Google Scholar 

  5. Bialecki RA, Kulik TJ, Colucci WS (1992) Stretching increases calcium influx and efflux in cultured pulmonary arterial smooth muscle cells. Am J Physiol 263:L602–L606

    CAS  PubMed  Google Scholar 

  6. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49:249–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buchwalow IB, Cacanyiova S, Neumann J, Samoilova VE, Boecker W, Kristek F (2008) The role of arterial smooth muscle in vasorelaxation. Biochem Biophys Res Commun 377:504–507

    Article  CAS  PubMed  Google Scholar 

  8. Buchwalow IB, Podzuweit T, Bocker W, Samoilova VE, Thomas S, Wellner M, Baba HA, Robenek H, Schnekenburger J, Lerch MM (2002) Vascular smooth muscle and nitric oxide synthase. FASEB J 16:500–508

    Article  CAS  PubMed  Google Scholar 

  9. Cacanyiova S, Dovinova I, Kristek F (2013) The role of oxidative stress in acetylcholine-induced relaxation of endothelium-denuded arteries. J Physiol Pharmacol 64:241–247

    CAS  PubMed  Google Scholar 

  10. Chen R, Kim O, Yang J, Sato K, Eisenmann KM, McCarthy J, Chen H, Qiu Y (2001) Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 276:31858–31862

    Article  CAS  PubMed  Google Scholar 

  11. Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, Selwyn AP (1996) Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation 93:266–271

    Article  CAS  PubMed  Google Scholar 

  12. Dick AS, Ivanovska J, Kantores C, Belcastro R, Keith Tanswell A, Jankov RP (2013) Cyclic stretch stimulates nitric oxide synthase-1-dependent peroxynitrite formation by neonatal rat pulmonary artery smooth muscle. Free Radic Biol Med 61:310–319

    Article  CAS  PubMed  Google Scholar 

  13. Dossumbekova A, Berdyshev EV, Gorshkova I, Shao Z, Li C, Long P, Joshi A, Natarajan V, Vanden Hoek TL (2008) Akt activates NOS3 and separately restores barrier integrity in H2O2-stressed human cardiac microvascular endothelium. Am J Physiol Heart Circ Physiol 295:H2417–H2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ducret T, El Arrouchi J, Courtois A, Quignard JF, Marthan R, Savineau JP (2010) Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Cell Calcium 48:251–259

    Article  CAS  PubMed  Google Scholar 

  15. Earley S, Walker BR (2003) Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction. Am J Physiol Heart Circ Physiol 284:H1655–H1661

    Article  CAS  PubMed  Google Scholar 

  16. Evora PR, Evora PM, Celotto AC, Rodrigues AJ, Joviliano EE (2012) Cardiovascular therapeutics targets on the NO-sGC-cGMP signaling pathway: a critical overview. Curr Drug Targets 13:1207–1214

    Article  CAS  PubMed  Google Scholar 

  17. Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806

    Article  CAS  PubMed  Google Scholar 

  18. Frazziano G, Champion HC, Pagano PJ (2012) NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. Am J Physiol Heart Circ Physiol 302:H2166–H2177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furfine ES, Harmon MF, Paith JE, Knowles RG, Salter M, Kiff RJ, Duffy C, Hazelwood R, Oplinger JA, Garvey EP (1994) Potent and selective inhibition of human nitric oxide synthases. Selective inhibition of neuronal nitric oxide synthase by S-methyl-L-thiocitrulline and S-ethyl-L-thiocitrulline. J Biol Chem 269:26677–26683

    CAS  PubMed  Google Scholar 

  20. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG (1997) 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272:4959–4963

    Article  CAS  PubMed  Google Scholar 

  21. Han JA, Seo EY, Kim HJ, Park SJ, Yoo HY, Kim JY, Shin DM, Kim JK, Zhang YH, Kim SJ (2013) Hypoxia-augmented constriction of deep femoral artery mediated by inhibition of eNOS in smooth muscle. Am J Physiol Cell Physiol 304:C78–C88

    Article  CAS  PubMed  Google Scholar 

  22. Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV (2006) Arteriolar myogenic signalling mechanisms: implications for local vascular function. Clin Hemorheol Microcirc 34:67–79

    PubMed  Google Scholar 

  23. Huang JS, Ramamurthy SK, Lin X, Le Breton GC (2004) Cell signalling through thromboxane A2 receptors. Cell Signal 16:521–533

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Sud N, Fonseca FV, Hou Y, Black SM (2010) Shear stress stimulates nitric oxide signaling in pulmonary arterial endothelial cells via a reduction in catalase activity: role of protein kinase C delta. Am J Physiol Lung Cell Mol Physiol 298:L105–L116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee HA, Baek EB, Park KS, Jung HJ, Kim JI, Kim SJ, Earm YE (2007) Mechanosensitive nonselective cation channel facilitation by endothelin-1 is regulated by protein kinase C in arterial myocytes. Cardiovasc Res 76:224–235

    Article  CAS  PubMed  Google Scholar 

  26. Lumb A (2005) Nunn’s applied respiratory physiology, 6th edn. Elsevier, Italy, pp 92–104

    Google Scholar 

  27. Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 289:L288–L289

    Article  CAS  PubMed  Google Scholar 

  28. Mathew R, Huang J, Gewitz MH (2007) Pulmonary artery hypertension: caveolin-1 and eNOS interrelationship: a new perspective. Cardiol Rev 15:143–149

    Article  PubMed  Google Scholar 

  29. McMurry JL, Chrestensen CA, Scott IM, Lee EW, Rahn AM, Johansen AM, Forsberg BJ, Harris KD, Salerno JC (2011) Rate, affinity and calcium dependence of nitric oxide synthase isoform binding to the primary physiological regulator calmodulin. FEBS J 278:4943–4954

    Article  CAS  PubMed  Google Scholar 

  30. Michel T, Vanhoutte PM (2010) Cellular signaling and NO production. Pflugers Arch 459:807–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Naik JS, Earley S, Resta TC, Walker BR (2005) Pressure-induced smooth muscle cell depolarization in pulmonary arteries from control and chronically hypoxic rats does not cause myogenic vasoconstriction. J Appl Physiol (1985) 98:1119–1124

    Article  CAS  Google Scholar 

  32. Nakayama K, Ueta K, Tanaka Y, Tanabe Y, Ishii K (1997) Stretch-induced contraction of rabbit isolated pulmonary artery and the involvement of endothelium-derived thromboxane A2. Br J Pharmacol 122:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paravicini TM, Montezano AC, Yusuf H, Touyz RM (2012) Activation of vascular p38MAPK by mechanical stretch is independent of c-Src and NADPH oxidase: influence of hypertension and angiotensin II. J Am Soc Hypertens 6:169–178

    Article  CAS  PubMed  Google Scholar 

  34. Park KS, Kim Y, Lee YH, Earm YE, Ho WK (2003) Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93:557–564

    Article  CAS  PubMed  Google Scholar 

  35. Park KS, Lee HA, Earm KH, Ko JH, Earm YE, Kim SJ (2006) Differential distribution of mechanosensitive nonselective cation channels in systemic and pulmonary arterial myocytes of rabbits. J Vasc Res 43:347–354

    Article  CAS  PubMed  Google Scholar 

  36. Park SJ, Yoo HY, Earm YE, Kim SJ, Kim JK, Kim SD (2011) Role of arachidonic acid-derived metabolites in the control of pulmonary arterial pressure and hypoxic pulmonary vasoconstriction in rats. Br J Anaesth 106:31–37

    Article  CAS  PubMed  Google Scholar 

  37. Sedoris KC, Ovechkin AV, Gozal E, Roberts AM (2009) Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem 115:34–46

    Article  CAS  PubMed  Google Scholar 

  38. Song P, Zhang M, Wang S, Xu J, Choi HC, Zou MH (2009) Thromboxane A2 receptor activates a Rho-associated kinase/LKB1/PTEN pathway to attenuate endothelium insulin signaling. J Biol Chem 284:17120–17128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thomas SR, Chen K, Keaney JF Jr (2002) Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J Biol Chem 277:6017–6024

    Article  CAS  PubMed  Google Scholar 

  40. Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A (2009) Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50 Ca2+ values for calmodulin binding and enzyme activation. J Biol Chem 284:11892–11899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoo HY, Kim SJ (2013) Disappearance of hypoxic pulmonary vasoconstriction and O2-sensitive nonselective cationic current in arterial myocytes of rats under ambient hypoxia. Korean J Physiol Pharmacol 17:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoo HY, Park SJ, Seo EY, Park KS, Han JA, Kim KS, Shin DH, Earm YE, Zhang YH, Kim SJ (2012) Role of thromboxane A2-activated nonselective cation channels in hypoxic pulmonary vasoconstriction of rat. Am J Physiol Cell Physiol 302:C307–C317

    Article  CAS  PubMed  Google Scholar 

  43. Zhou X, Yuan D, Wang M, He P (2013) H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules. Am J Physiol Heart Circ Physiol 304:H82–H93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Joon Kim.

Ethics declarations

Conflict of interest

None declared.

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Nos. 2007-0056092 and 2011-0017370) and also by the Brain Korea 21 PLUS Program.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Figure S1. Angiotensin II treatment induced a significant transient contraction of S(+) PA. However, no contractile response to the addition of L-NAME was observed (.). Data from six repeated experiments are summarized (B). Supplementary Figure S2. Intermediate level of basal stretch (1.96 mN) was applied, S(−/+) PA. In total eight cases of experiments, six S(−/+) PA showed minute contractile response to L-NAME (A), and only two cases showed strong contraction (B). (PPT 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Yoo, H.Y., Jang, J.H. et al. Wall stretch and thromboxane A2 activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation. Pflugers Arch - Eur J Physiol 468, 705–716 (2016). https://doi.org/10.1007/s00424-015-1778-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1778-1

Keywords

Navigation