Skip to main content

Advertisement

Log in

Physiology and pathophysiology of SLC12A1/2 transporters

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The electroneutral Na+–K+–Cl cotransporters NKCC1 (encoded by the SLC12A2 gene) and NKCC2 (SLC12A1 gene) belong to the Na+-dependent subgroup of solute carrier 12 (SLC12) family of transporters. They mediate the electroneutral movement of Na+ and K+, tightly coupled to the movement of Cl across cell membranes. As they use the energy of the ion gradients generated by the Na+/K+-ATPase to transport Na+, K+, and Cl from the outside to the inside of a cell, they are considered secondary active transport mechanisms. NKCC-mediated transport occurs in a 1Na+, 1K+, and 2Cl ratio, although NKCC1 has been shown to sometimes mediate partial reactions. Both transporters are blocked by bumetanide and furosemide, drugs which are commonly used in clinical medicine. NKCC2 is the molecular target of loop diuretics as it is expressed on the apical membrane of thick ascending limb of Henle epithelial cells, where it mediates NaCl reabsorption. NKCC1, in contrast, is found on the basolateral membrane of Cl secretory epithelial cells, as well as in a variety of non-epithelial cells, where it mediates cell volume regulation and participates in Cl homeostasis. Following their molecular identification two decades ago, much has been learned about their biophysical properties, their mode of operation, their regulation by kinases and phosphatases, and their physiological relevance. However, despite this tremendous amount of new information, there are still so many gaps in our knowledge. This review summarizes information that constitutes consensus in the field, but it also discusses current points of controversy and highlights many unanswered questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altamirano AA, Breitwieser GE, Russel JM (1988) Vanadate and fluoride effects on Na–K–Cl cotransport in squid giant axon. Am J Physiol 254:C582–C586

    CAS  PubMed  Google Scholar 

  2. Alvarez-Leefmans FJ, Gamiño SM, Giraldez F et al (1988) Intracellular chloride regulation in amphibian dorsal root ganglion neurons studied with ion-selective microelectrodes. J Physiol Lond 406:225–246

    CAS  PubMed  Google Scholar 

  3. Ares GR, Caceres P, Alvarez-Leefmans FJ et al (2008) cGMP decreases surface NKCC2 levels in the thick ascending limb: role of phosphodiesterase 2 (PDE2). Am J Physiol Renal Physiol 295:F877–F887

    CAS  PubMed  Google Scholar 

  4. Ares GR, Caceres PS, Ortiz PA (2011) Molecular regulation of NKCC2 in the thick ascending limb. Am J Physiol Renal Physiol 301:F1143–F1159

    CAS  PubMed  Google Scholar 

  5. Balakrishnan V, Becker M, Lohrke S et al (2003) Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J Neurosci 23:4134–4145

    CAS  PubMed  Google Scholar 

  6. Bennett CM, Brenner BM, Berliner RW (1968) Micropuncture study of nephron function in the rhesus monkey. J Clin Invest 47:203–216

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bergeron MJ, Gagnon E, Wallendorff B et al (2003) Ammonium transport and pH regulation by K(+)–Cl(−) cotransporters. Am J Physiol Renal Physiol 285:F68–F78

    CAS  PubMed  Google Scholar 

  8. Boudeau J, Baas AF, Deak M et al (2003) MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. Embo J 22:5102–5114

    CAS  PubMed  Google Scholar 

  9. Brumback AC, Staley KJ (2008) Thermodynamic regulation of NKCC1-mediated Cl cotransport underlies plasticity of GABA(A) signaling in neonatal neurons. J Neurosci 28:1301–1312

    CAS  PubMed  Google Scholar 

  10. Caceres PS, Ares GR, Ortiz PA (2009) cAMP stimulates apical exocytosis of the renal Na(+)–K(+)–2Cl(−) cotransporter NKCC2 in the thick ascending limb: role of protein kinase A. J Biol Chem 284:24965–24971

    CAS  PubMed  Google Scholar 

  11. Calò LA (2006) Vascular tone control in humans: insights from studies in Bartter’s/Gitelman’s syndromes. Kidney Int 69:963–966

    PubMed  Google Scholar 

  12. Capasso G, Rizzo M, Evangelista C et al (2005) Altered expression of renal apical plasma membrane Na + transporters in the early phase of genetic hypertension. Am J Physiol Renal Physiol 288:F1173–F1182

    CAS  PubMed  Google Scholar 

  13. Carmosino M, Giménez I, Caplan M et al (2008) Exon loss accounts for differential sorting of Na–K–Cl cotransporters in polarized epithelial cells. Mol Biol Cell 19:4341–4351

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Carmosino M, Procino G, Svelto M (2012) Na + −K + −2Cl − cotransporter type 2 trafficking and activity: the role of interacting proteins. Biol Cell 104:201–212

    CAS  PubMed  Google Scholar 

  15. Carmosino M, Rizzo F, Ferrari P et al (2011) NKCC2 is activated in Milan hypertensive rats contributing to the maintenance of salt-sensitive hypertension. Pflügers Arch Eur J Physiol 462:281–291

    CAS  Google Scholar 

  16. Carmosino M, Rizzo F, Procino G et al (2010) MAL/VIP17, a new player in the regulation of NKCC2 in the kidney. Mol Biol Cell 21:3985–3997

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Carmosino M, Rizzo F, Torretta S et al (2013) High-throughput fluorescent-based NKCC functional assay in adherent epithelial cells. BMC Cell Biol 14:16

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Carota I, Theilig F, Oppermann M et al (2010) Localization and functional characterization of the human NKCC2 isoforms. Acta Physiol (Oxf) 199:327–338

    CAS  Google Scholar 

  19. Castrop H, Schnermann J (2008) Isoforms of renal Na–K–2Cl cotransporter NKCC2: expression and functional significance. Am J Physiol Renal Physiol 295:F859–F866

    CAS  PubMed  Google Scholar 

  20. Cho HM, Lee HA, Kim HY et al (2011) Expression of Na+–K+–2Cl cotransporter 1 is epigenetically regulated during postnatal development of hypertension. Am J Hypertens 24:1286–1293

    CAS  PubMed  Google Scholar 

  21. Cui CY, Childress V, Piao Y et al (2012) Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na–K–Cl cotransporter 1. Proc Natl Acad Sci U S A 109:1199–1203

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Darman RB, Flemmer A, Forbush BI (2001) Modulation of ion transport by direct targeting of PP1 to the Na–K–Cl cotransporter. J Biol Chem 276:34359–34362

    CAS  PubMed  Google Scholar 

  23. Darman RB, Forbush B (2002) A regulatory locus of phosphorylation in the N terminus of the Na–K–Cl cotransporter, NKCC1. J Biol Chem 277:37542–37550

    CAS  PubMed  Google Scholar 

  24. DeFazio RA, Heger S, Ojeda SR et al (2002) Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891

    CAS  PubMed  Google Scholar 

  25. Delpire E, Days E, Mi D et al (2009) Small molecule screen identifies inhibitors of the neuronal K–Cl cotransporter KCC2. Proc Natl Acad Sci U S A 106:5383–5388

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Delpire E, Gagnon KB (2011) Kinetics of hyperosmotically-stimulated Na–K–2Cl cotransporter in Xenopus laevis oocytes. Am J Physiol Cell Physiol 301:C1074–C1085

    CAS  PubMed  Google Scholar 

  27. Delpire E, Lu J, England R et al (1999) Deafness and imbalance associated with inactivation of the secretory Na–K–2Cl co-transporter. Nat Genet 22:192–195

    CAS  PubMed  Google Scholar 

  28. Delpire E, Rauchman MI, Beier DR et al (1994) Molecular cloning and chromosome localization of a putative basolateral Na–K–2Cl cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem 269:25677–25683

    CAS  PubMed  Google Scholar 

  29. Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14

    CAS  PubMed  Google Scholar 

  30. Dixon MJ, Gazzard J, Chaudhry SS et al (1999) Mutation of the Na–K–Cl co-transporter gene Slc12a2 results in deafness in mice. Hum Mol Genet 8:1579–1584

    CAS  PubMed  Google Scholar 

  31. Dowd BF, Forbush B (2003) PASK (proline-alanine-rich STE20-related kinase), a regulatory kinase of the Na–K–Cl cotransporter (NKCC1). J Biol Chem 278:27347–27353

    CAS  PubMed  Google Scholar 

  32. Dzhala VI, Talos DM, Sdrulla DA et al (2005) NKCC1 transporter facilitates seizures in the developing brain. Nat Med 11:1205–1213

    CAS  PubMed  Google Scholar 

  33. Eftekhari S, Mehvari Habibabadi J, Najafi Ziarani M et al (2013) Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia 54:e9–e12

    CAS  PubMed  Google Scholar 

  34. Evans RL, Park K, Turner RJ et al (2000) Severe impairment of salivation in Na+/K+/2Cl cotransporter (NKCC1)-deficient mice. J Biol Chem 275:26720–26726

    CAS  PubMed  Google Scholar 

  35. Feldstein AE, Miller SM, El-Youssef M et al (2003) Chronic intestinal pseudoobstruction associated with altered interstitial cells of Cajal networks. J Pediatr Gastroenterol Nutr 36:492–497

    PubMed  Google Scholar 

  36. Filippi BM, de los Heros P, Mehellou Y et al (2011) MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases. Embo J 30:1730–1741

    CAS  PubMed  Google Scholar 

  37. Flagella M, Clarke LL, Miller ML et al (1999) Mice lacking the basolateral Na–K–2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J Biol Chem 274:26946–26955

    CAS  PubMed  Google Scholar 

  38. Flemmer AW, Gimenez I, Dowd BF et al (2002) Activation of the Na–K–Cl cotransporter NKCC1 detected with a phospho-specific antibody. J Biol Chem 277:37551–37558

    CAS  PubMed  Google Scholar 

  39. Fraser SA, Gimenez I, Cook N et al (2007) Regulation of the renal-specific Na+–K+–2Cl co-transporter NKCC2 by AMP-activated protein kinase (AMPK). Biochem J 405:85–93

    CAS  PubMed  Google Scholar 

  40. Gagnon KB, Delpire E (2010) Molecular determinants of hyperosmotically activated NKCC1-mediated K+/K+ exchange. J Physiol Lond 588:3385–3396

    CAS  PubMed  Google Scholar 

  41. Gagnon KB, Delpire E (2010) Multiple pathways for protein phosphatase 1 (PP1) regulation of Na–K–2Cl cotransporter (NKCC1) function. The N-terminal tail of the Na–K–2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) and PP1. J Biol Chem 285:14115–14121

    CAS  PubMed  Google Scholar 

  42. Gagnon KB, Delpire E (2012) Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Physiol Rev 92:1577–1617

    CAS  PubMed  Google Scholar 

  43. Gagnon KB, Delpire E (2013) Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically-engineered mouse knockouts. Am J Physiol Cell Physiol 304:C693–C714

    PubMed  Google Scholar 

  44. Gagnon KB, England R, Delpire E (2006) Volume sensitivity of cation–chloride cotransporters is modulated by the interaction of two kinases: SPAK and WNK4. Am J Physiol Cell Physiol 290:C134–C142

    CAS  PubMed  Google Scholar 

  45. Gagnon KB, England R, Delpire E (2007) A single binding motif is required for SPAK activation of the Na–K–2Cl cotransporter. Cell Physiol Biochem 20:131–142

    CAS  PubMed  Google Scholar 

  46. Gagnon KB, England R, Diehl L et al (2007) Apoptosis associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na–K–2C1 cotransporter regulation. Am J Physiol Cell Physiol 292:C1809–C1815

    CAS  PubMed  Google Scholar 

  47. Gamba G, Miyanoshita A, Lombardi M et al (1994) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium–(potassium)–chloride cotransporter family expressed in kidney. J Biol Chem 269:17713–17722

    CAS  PubMed  Google Scholar 

  48. Garg P, Martin CF, Elms SC et al (2007) Effect of the Na–K–2Cl cotransporter NKCC1 on systemic blood pressure and smooth muscle tone. Am J Physiol Heart Circ Physiol 292:H2100–H2105

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Geck P, Heinz E (1986) The Na–K–2Cl cotransport system. J Membrane Biol 91:97–105

    CAS  Google Scholar 

  50. Geck P, Pietrzyk C, Burckhardt B-C et al (1980) Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells. Biochim Biophys Acta 600:432–447

    CAS  PubMed  Google Scholar 

  51. Geng Y, Hoke A, Delpire E (2009) The Ste20 kinases SPAK and OSR1 regulate NKCC1 function in sensory neurons. J Biol Chem 284:14020–14028

    CAS  PubMed  Google Scholar 

  52. Gerelsaikhan T, Turner RJ (2000) Transmembrane topology of the secretory Na+–K+–2Cl cotransporter NKCC1 studied by in vitro translation. J Biol Chem 275:40471–40477

    CAS  PubMed  Google Scholar 

  53. Giménez I (2006) Molecular mechanisms and regulation of furosemide-sensitive Na–K–Cl cotransporters. Curr Opin Nephrol Hypertens 15:517–523

    PubMed  Google Scholar 

  54. Giménez I, Forbush B (2003) Short-term stimulation of the renal Na–K–Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 278:26946–26951

    PubMed  Google Scholar 

  55. Gimenez I, Forbush B (2005) Regulatory phosphorylation sites in the NH2 terminus of the renal Na–K–Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 289:F1341–F1345

    CAS  PubMed  Google Scholar 

  56. Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch 392:92–94

    CAS  Google Scholar 

  57. Grimm PR, Liu J, Coleman R et al (2011) Phosphorylation-dependent regulation of NCC is blunted in SPAK null mice (SPAK−/−). FASEB J 25:1041.26

    Google Scholar 

  58. Grubb BR, Pace AJ, Lee E et al (2001) Alterations in airway ion transport in NKCC1-deficient mice. Am J Physiol Cell Physiol 281:C615–C623

    CAS  PubMed  Google Scholar 

  59. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    CAS  PubMed  Google Scholar 

  60. Ibla JC, Khoury J, Kong T et al (2006) Transcriptional repression of Na–K–2Cl cotransporter NKCC1 by hypoxia-inducible factor-1. Am J Physiol Cell Physiol 291:C282–C289

    CAS  PubMed  Google Scholar 

  61. Igarashi P, Vanden Heuvel GB, Payne JA et al (1995) Cloning, embryonic expression and alternative splicing of a murine kidney specific Na–K–Cl cotransporter. Am J Physiol (Renal Fluid Electrolyte Physiol) 269:F405–F418

    CAS  Google Scholar 

  62. Igarashi P, Vanden Heuvel GB, Quaggin SE et al (1994) Cloning, embryonic expression, and chromosomal localization of murine renal Na–K–Cl cotransporter (NKCC2). J Am Soc Nephrol 5:288

    Google Scholar 

  63. Igarashi P, Whyte DA, Li K et al (1996) Cloning and kidney cell-specific activity of the promoter of the murine renal Na–K–Cl cotransporter gene. J Biol Chem 271:9666–9674

    CAS  PubMed  Google Scholar 

  64. Ikebe M, Nonoguchi H, Nakayama Y et al (2001) Upregulation of the secretory-type Na(+)/K(+)/2Cl(−)-cotransporter in the kidney by metabolic acidosis and dehydration in rats. J Am Soc Nephrol 12:423–430

    CAS  PubMed  Google Scholar 

  65. Isenring P, Jacoby SC, Chang J et al (1998) Mutagenic mapping of the Na–K–Cl cotransporter for domains involved in ion transport and bumetanide binding. J Gen Physiol 112:549–558

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Isenring P, Jacoby SC, Forbush BI (1998) The role of transmembrane domain 2 in cation transport by the Na–K–Cl cotransporter. Proc Natl Acad Sci U S A 95:7179–7184

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Jakab RL, Collaco AM, Ameen NA (2011) Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt–villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300:G82–G98

    CAS  PubMed  Google Scholar 

  68. Kaplan MR, Mount DB, Delpire E et al (1996) Molecular mechanisms of NaCl cotransport. Annu Rev Physiol 58:649–668

    CAS  PubMed  Google Scholar 

  69. Kaplan MR, Plotkin MD, Brown D et al (1996) Expression of the mouse Na–K–2Cl cotransporter, mBSC2, in the terminal IMCD, the glomerular and extraglomerular mesangium and the glomerular afferent arteriole. J Clin Invest 98:723–730

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kaplan MR, Plotkin MD, Lee W-S et al (1996) Apical localization of the Na–K–2Cl cotransporter, rBSC1, on rat thick ascending limbs. Kidney Int 49:40–47

    CAS  PubMed  Google Scholar 

  71. Karim Z, Attmane-Elakeb A, Sibella V et al (2003) Acid pH increases the stability of BSC1/NKCC2 mRNA in the medullary thick ascending limb. J Am Soc Nephrol 14:2229–2214

    CAS  PubMed  Google Scholar 

  72. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    CAS  PubMed  Google Scholar 

  73. Kim HY (2009) Renal handling of ammonium and acid base regulation. Electrolyte Blood Press 7:9–13

    PubMed Central  PubMed  Google Scholar 

  74. Krug AW, Papavassiliou F, Hopfer U et al (2003) Aldosterone stimulates surface expression of NHE3 in renal proximal brush borders. Pfluegers Arch 446:492–496

    CAS  Google Scholar 

  75. Lee MP, Ravenel JD, Hu RJ et al (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Li Y, Hu J, Vita R et al (2004) SPAK kinase is a substrate and target of PKCtheta in T-cell receptor-induced AP-1 activation pathway. Embo J 23:1112–1122

    CAS  PubMed  Google Scholar 

  77. Lin SH, Yu IS, Jiang ST et al (2011) Impaired phosphorylation of Na+–K+–2Cl cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. Proc Natl Acad Sci U S A 108:17538–17543

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Loffing J, Schild L (2005) Functional domains of the epithelial sodium channel. J Am Soc Nephrol 16:3175–3181

    CAS  PubMed  Google Scholar 

  79. Lytle C, Forbush BI (1992) The Na–K–Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem 267:25438–25443

    CAS  PubMed  Google Scholar 

  80. Lytle C, Forbush BI (1996) Regulatory phosphorylation of the secretory Na–K–Cl cotransporter: modulation by cytoplasmic Cl. Am J Physiol Cell Physiol 270:C437–C448

    CAS  Google Scholar 

  81. Lytle C, McManus TJ, Haas M (1998) A model of Na–K–2Cl cotransport based on ordered ion binding and glide symmetry. Am J Physiol 274:C299–C309

    CAS  PubMed  Google Scholar 

  82. Malnic G, Klose RM, Giebisch G (1966) Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol 211:529–547

    CAS  PubMed  Google Scholar 

  83. McCormick JA, Ellison DH (2011) The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 91:177–219

    CAS  PubMed Central  PubMed  Google Scholar 

  84. McCormick JA, Mutig K, Nelson JH et al (2011) A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab 14:352–364

    CAS  PubMed Central  PubMed  Google Scholar 

  85. McManus TJ (1987) Na, K,2Cl cotransport: kinetics and mechanism. Fed Proc 46:2377–2394

    PubMed  Google Scholar 

  86. Monette MY, Forbush B (2012) Regulatory activation is accompanied by movement in the C terminus of the Na–K–Cl cotransporter (NKCC1). J Biol Chem 287:2210–2220

    CAS  PubMed  Google Scholar 

  87. Moore-Hoon ML, Turner RJ (2000) The structural unit of the secretory Na+–K+–2Cl cotransporter (NKCC1) is a homodimer. Biochemistry 39:3718–3724

    CAS  PubMed  Google Scholar 

  88. Mutig K, Paliege A, Kahl T et al (2007) Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am J Physiol Renal Physiol 293:F1166–F1177

    CAS  PubMed  Google Scholar 

  89. Neyroud N, Tesson F, Denjoy I et al (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nature Gen 15:186–189

    CAS  Google Scholar 

  90. Nezu A, Parvin MN, Turner RJ (2009) A conserved hydrophobic tetrad near the C terminus of the secretory Na+–K+–2Cl cotransporter (NKCC1) is required for its correct intracellular processing. J Biol Chem 284:6869–6876

    CAS  PubMed  Google Scholar 

  91. O’Mahony F, Toumi F, Mroz MS et al (2008) Induction of Na+/K+/2Cl cotransporter expression mediates chronic potentiation of intestinal epithelial Cl − secretion by EGF. Am J Physiol Cell Physiol 294:C1362–C1370

    PubMed  Google Scholar 

  92. O’Rourke JF, Dachs GU, Gleadle JM et al (1997) Hypoxia response elements. Oncology Res 9:327–332

    Google Scholar 

  93. Oppermann M, Mizel D, Kim SM et al (2007) Renal function in mice with targeted disruption of the A isoform of the Na–K–2Cl co-transporter. J Am Soc Nephrol 18:440–448

    CAS  PubMed  Google Scholar 

  94. Pace AJ, Lee E, Athirakul K et al (2000) Failure of spermatogenesis in mouse lines deficient in the Na+–K+–2Cl cotransporter. J Clin Invest 105:441–450

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Pacheco-Alvarez D, Cristóbal PS, Meade P et al (2006) The Na+:Cl cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem 281:28755–28763

    CAS  PubMed  Google Scholar 

  96. Pallesen LT, Vaegter CB (2012) Sortilin and SorLA regulate neuronal sorting of trophic and dementia-linked proteins. Mol Neurobiol 45:379–387

    CAS  PubMed  Google Scholar 

  97. Paredes A, Plata C, Rivera M et al (2006) Activity of the renal Na + −K + −2Cl − cotransporter is reduced by mutagenesis of N-glycosylation sites: role for protein surface charge in Cl − transport. Am J Physiol Renal Physiol 290:F1094–F1102

    CAS  PubMed  Google Scholar 

  98. Payne JA, Forbush BI (1994) Alternatively spliced isoforms of the putative renal Na–K–Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci U S A 91:4544–4548

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Pellikainen JM, Kosma VM (2007) Activator protein-2 in carcinogenesis with a special reference to breast cancer—a mini review. Int J Cancer 120:2061–2067

    CAS  PubMed  Google Scholar 

  100. Peti-Peterdi J, Harris RC (2010) Macula densa sensing and signaling mechanisms of renin release. J Am Soc Nephrol 21:1093–1096

    CAS  PubMed  Google Scholar 

  101. Piechotta K, Lu J, Delpire E (2002) Cation–chloride cotransporters interact with the stress-related kinases SPAK and OSR1. J Biol Chem 277:50812–50819

    CAS  PubMed  Google Scholar 

  102. Plotkin MD, Kaplan MR, Peterson LN et al (1997) Expression of the Na+–K+–2Cl cotransporter BSC2 in the nervous system. Am J Physiol Cell Physiol 272:C173–C183

    CAS  Google Scholar 

  103. Plotkin MD, Snyder EY, Hebert SC et al (1997) Expression of the Na–K–2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain. J Neurobiol 33:781–795

    CAS  PubMed  Google Scholar 

  104. Ponce-Coria J, Gagnon KB, Delpire E (2012) Calcium-binding protein 39 facilitates molecular interaction between Ste20p proline alanine-rich kinase and oxidative stress response 1 monomers. Am J Physiol Cell Physiol 303:C1198–C1205

    CAS  PubMed  Google Scholar 

  105. Randall J, Thorne T, Delpire E (1997) Partial cloning and characterization of Slc12a2: the gene encoding the secretory Na+–K+–2Cl cotransporter. Am J Physiol Cell Physiol 273:C1267–C1277

    CAS  Google Scholar 

  106. Reiche J, Theilig F, Rafiqi FH et al (2010) SORLA/SORL1 functionally interacts with SPAK to control renal activation of Na(+)–K(+)–Cl(−) cotransporter 2. Mol Cell Biol 30:3027–3037

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Reisert J, Lai J, Yau KW et al (2005) Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron 45:553–561

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Richardson C, Sakamoto K, de los Heros P et al (2011) Regulation of the NKCC2 ion cotransporter by SPAK–OSR1-dependent and -independent pathways. J Cell Sci 124:789–800

    CAS  PubMed  Google Scholar 

  109. Russell JM (1983) Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process. J Gen Physiol 81:909–925

    CAS  PubMed  Google Scholar 

  110. Schlatter E, Salomonsson M, Persson AE et al (1989) Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na + 2Cl − K + cotransport. Pflugers Arch 414:286–290

    CAS  PubMed  Google Scholar 

  111. Simard CF, Brunet GM, Daigle ND et al (2004) Self-interacting domains in the C terminus of a cation-Cl − cotransporter described for the first time. J Biol Chem 279:40769–40777

    CAS  PubMed  Google Scholar 

  112. Simon DB, Karet FE, Hamdan JM et al (1996) Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nature Gen 13:183–188

    CAS  Google Scholar 

  113. Smith L, Smallwood N, Altman A et al (2008) PKCdelta acts upstream of SPAK in the activation of NKCC1 by hyperosmotic stress in human airway epithelial cells. J Biol Chem 283:22147–22156

    CAS  PubMed  Google Scholar 

  114. Somasekharan S, Tanis J, Forbush B (2012) Loop diuretic and ion-binding residues revealed by scanning mutagenesis of transmembrane helix 3 (TM3) of Na–K–Cl cotransporter (NKCC1). J Biol Chem 287:17308–17317

    CAS  PubMed  Google Scholar 

  115. Starremans PG, Kersten FF, Knoers NV et al (2003) Mutations in the human Na–K–2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol 14:1419–1426

    PubMed  Google Scholar 

  116. Sung K-W, Kirby M, McDonald MP et al (2000) Abnormal GABAA-receptor mediated currents in dorsal root ganglion neurons isolated from Na–K–2Cl cotransporter null mice. J Neurosci 20:7531–7538

    CAS  PubMed  Google Scholar 

  117. Takahashi N, Chernavvsky DR, Gomez RA et al (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci U S A 97:5434–5439

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Trepiccione F, Zacchia M, Capasso G (2012) The role of the kidney in salt-sensitive hypertension. Clin Exp Nephrol 16:68–72

    CAS  PubMed  Google Scholar 

  119. Vanderwinden JM, Liu H, De Laet MH et al (1996) Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology 111:279–288

    CAS  PubMed  Google Scholar 

  120. Vanderwinden JM, Rumessen JJ, Liu H et al (1996) Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 111:901–910

    CAS  PubMed  Google Scholar 

  121. Vetter DE, Mann JR, Wangemann P et al (1996) Inner ear defects induced by null mutation of the isk gene. Neuron 17:1251–1264

    CAS  PubMed  Google Scholar 

  122. Vibat CR, Holland MJ, Kang JJ et al (2001) Quantitation of Na+–K+–2Cl cotransport splice variants in human tissues using kinetic polymerase chain reaction. Anal Biochem 298:218–230

    CAS  PubMed  Google Scholar 

  123. Vitari AC, Deak M, Morrice NA et al (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome, phosphorylate and active SPAK and OSR1 protein kinases. Biochem J 391:17–24

    CAS  PubMed  Google Scholar 

  124. Wagner CA, Devuyst O, Bourgeois S et al (2009) Regulated acid–base transport in the collecting duct. Pfluegers Arch 458:137–156

    CAS  Google Scholar 

  125. Wedel T, Spiegler J, Soellner S et al (2002) Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology 123:1459–1467

    PubMed  Google Scholar 

  126. Weiner ID, Verlander JW (2011) Role of NH3 and NH4+ transporters in renal acid–base transport. Am J Physiol Renal Physiol 300:F11–F23

    CAS  PubMed  Google Scholar 

  127. Welker P, Böhlick A, Mutig K et al (2008) Renal Na+–K+–Cl cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 295:F789–F802

    CAS  PubMed  Google Scholar 

  128. Willis WD (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124:395–421

    CAS  PubMed  Google Scholar 

  129. Wong FH, Chen JS, Reddy V et al (2012) The amino acid–polyamine–organocation superfamily. J Mol Microbiol Biotechnol 22:105–113

    PubMed  Google Scholar 

  130. Wouters M, De Laet A, Ver Donck L et al (2006) Subtractive hybridization unravels a role for the ion co-transporter NKCC1 in the murine intestinal pacemaker. Am J Physiol Gastrointest Liver Physiol 290:G1219–G1227

    CAS  PubMed  Google Scholar 

  131. Wu Q, Delpire E, Hebert SC et al (1998) Functional demonstration of Na–K–2Cl cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol Cell Physiol 275:C1565–C1572

    CAS  Google Scholar 

  132. Xu J-C, Lytle C, Zhu TT et al (1994) Molecular cloning and functional expression of the bumetanide-sensitive Na–K–2Cl cotransporter. Proc Natl Acad Sci U S A 91:2201–2205

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Yamamoto Y, Matsubara A, Ishii K et al (2002) Localization of gamma-aminobutyric acid A receptor subunits in the rat spiral ganglion and organ of Corti. Acta Otolaryngol 122:709–714

    CAS  PubMed  Google Scholar 

  134. Yamashita A, Singh SK, Kawate T et al (2005) Crystal structure of a bacterial homologue of Na+/Cl−−dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  135. Yang T, Huang YG, Singh I et al (1996) Localization of bumetanide- and thiazide-sensitive Na–K–Cl cotransporters along the rat nephron. Am J Physiol (Renal Physiol) 271:F931–F939

    CAS  Google Scholar 

  136. Yang SS, Lo YF, Wu CC et al (2010) SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol 21:1868–1877

    CAS  PubMed  Google Scholar 

  137. Zaarour N, Defontaine N, Demaretz S et al (2011) Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem 286:9489–9502

    CAS  PubMed  Google Scholar 

  138. Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    CAS  Google Scholar 

  139. Zhang LL, Delpire E, Vardi N (2007) NKCC1 does not accumulate chloride in developing retinal neurons. J Neurophysiol 98:266–277

    CAS  PubMed  Google Scholar 

  140. Zhu L, Polley N, Mathews GC et al (2008) NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus. Epilepsy Res 79:201–212

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant DK-093501 and the National Institute of General Medical Sciences Grant GM074771 (to E. Delpire). The authors wish to thank Dr. Kenneth Gagnon (University of Saskatchewan, Saskatoon, SK, Canada) for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Delpire.

Additional information

This article is published as part of the Special Issue on Sodium-dependent transporters in health and disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markadieu, N., Delpire, E. Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch - Eur J Physiol 466, 91–105 (2014). https://doi.org/10.1007/s00424-013-1370-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1370-5

Keywords

Navigation