Skip to main content

Advertisement

Log in

Zinc modulation of basal and β-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases

  • Ion channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Zinc exists in biological systems as bound and histochemically reactive free Zn2+ in the nanomolar range. Zinc is required as either structural or catalytic component for a large number of enzymes. It also modulates current passage through many ion channels. Here, we reinvestigated the effects of extracellular and intracellular Zn2+ on the L-type Ca2+ current (I CaL) and its modulation by β-adrenergic stimulation in rat ventricular cardiomyocytes. In the absence of Ca2+ ions, Zn2+ could permeate through the L-type channel at much lower concentrations and at a more positive voltage range, but with a lower permeability than Ca2+. In the presence of Ca2+, extracellular Zn2+ demonstrated strong bimodal inhibitory effects on the I CaL, with half-inhibition occurring around 30 nM, i.e., in the range of concentrations found in the plasma. Intracellular Zn2+ also significantly inhibited the I CaL with a half-inhibitory effect at 12.7 nM. Moreover, β-adrenergic stimulation was markedly reduced by intracellular Zn2+ at even lower concentrations (<1 nM) as a consequence of Zn2+-induced inhibition of the adenylyl cyclase. All these effects appeared independent of redox variations and were not affected by dithiothreitol. Thus, both basal intracellular and extracellular Zn2+ modulate transmembrane Ca2+ movements and their regulation by β-adrenergic stimulation. Considering that, in many pathological situations, including diabetes, the extracellular Zn2+ concentration is reduced and the intracellular one is increased, our results help to explain both Ca2+ overload and marked reduction in the β-adrenergic stimulation in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez JL, Artiles A, Talavera K, Vassort G (2000) Modulation of voltage-dependent facilitation of the T-type calcium current by sodium ion in isolated frog atrial cells. Pflügers Arch 441:39–48

    Article  PubMed  CAS  Google Scholar 

  2. Andersson DC, Fauconnier J, Yamada T, Lacampagne A, Zhang SJ, Katz A, Westerblad H (2011) Mitochondrial production of reactive oxygen species contributes to the beta-adrenergic stimulation of mouse cardiomyocytes. J Physiol 589:1791–1801

    Article  PubMed  CAS  Google Scholar 

  3. Ando M, Oku N, Takeda A (2010) Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin. Neurochem Int 57:608–614

    Article  PubMed  CAS  Google Scholar 

  4. Aras MA, Saadi RA, Aizenman E (2009) Zn2+ regulates Kv2.1 voltage-dependent gating and localization following ischemia. Eur J Neurosci 30:2250–2257

    Article  PubMed  Google Scholar 

  5. Ascher P, Nowak L (1988) The role of divalent cations in the N-methyl-d-aspartate responses of mouse central neurones in culture. J Physiol 399:247–266

    PubMed  CAS  Google Scholar 

  6. Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation–transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270:2473–2477

    Article  PubMed  CAS  Google Scholar 

  7. Ayaz M, Turan B (2006) Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 290:H1071–H1080

    Article  PubMed  CAS  Google Scholar 

  8. Baltas LG, Karczewski P, Krause EG (1997) Effects of zinc on phospholamban phosphorylation. Biochem Biophys Res Commun 232:394–397

    Article  PubMed  CAS  Google Scholar 

  9. Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341

    Article  PubMed  CAS  Google Scholar 

  10. Bilginoglu A, Seymen A, Tuncay E, Zeydanli E, Aydemir-Koksoy A, Turan B (2009) Antioxidants but not doxycycline treatments restore depressed beta-adrenergic responses of the heart in diabetic rats. Cardiovasc Toxicol 9:21–29

    Article  PubMed  CAS  Google Scholar 

  11. Brennan JP, Bardswell SC, Burgoyne JR, Fuller W, Schroder E, Wait R, Begum S, Kentish JC, Eaton P (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281:21827–21836

    Article  PubMed  CAS  Google Scholar 

  12. Brumas V, Hacht B, Filella M, Berthon G (1992) Can N-acetyl-l-cysteine affect zinc metabolism when used as a paracetamol antidote? Agents Actions 36:278–288

    PubMed  CAS  Google Scholar 

  13. Choi YB, Lipton SA (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23:171–180

    Article  PubMed  CAS  Google Scholar 

  14. Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678–8689

    Article  PubMed  CAS  Google Scholar 

  15. Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5:55–65

    Article  PubMed  CAS  Google Scholar 

  16. Fayyazuddin A, Villarroel A, Le Goff A, Lerma J, Neyton J (2000) Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron 25:683–694

    Article  PubMed  CAS  Google Scholar 

  17. Fukuda J, Kawa K (1977) Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane. Science 196:309–311

    Article  PubMed  CAS  Google Scholar 

  18. Gando S, Hattori Y, Akaishi Y, Nishihira J, Kanno M (1997) Impaired contractile response to beta adrenoceptor stimulation in diabetic rat hearts: alterations in beta adrenoceptors-G protein-adenylate cyclase system and phospholamban phosphorylation. J Pharmacol Exp Ther 282:475–484

    PubMed  CAS  Google Scholar 

  19. Gao X, Du Z, Patel TB (2005) Copper and zinc inhibit GalphaS function: a nucleotide-free state of GalphaS induced by Cu2+ and Zn2+. J Biol Chem 280:2579–2586

    Article  PubMed  CAS  Google Scholar 

  20. Gilly WF, Armstrong CM (1982) Divalent cations and the activation kinetics of potassium channels in squid giant axons. J Gen Physiol 79:965–996

    Article  PubMed  CAS  Google Scholar 

  21. Gilly WF, Armstrong CM (1982) Slowing of sodium channel opening kinetics in squid axon by extracellular zinc. J Gen Physiol 79:935–964

    Article  PubMed  CAS  Google Scholar 

  22. Gómez AM, Kerfant BG, Vassort G (2000) Microtubule disruption modulates Ca2+ signaling in rat cardiac myocytes. Circ Res 86:30–36

    Article  PubMed  Google Scholar 

  23. Haase H, Maret W (2003) Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res 291:289–298

    Article  PubMed  CAS  Google Scholar 

  24. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  25. Hool LC (2009) The L-type Ca2+ channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ 18:3–10

    Article  PubMed  CAS  Google Scholar 

  26. Hool LC, Arthur PG (2002) Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the L-type Ca2+ channel to beta-adrenergic receptor stimulation in cardiac myocytes. Circ Res 91:601–609

    Article  PubMed  CAS  Google Scholar 

  27. Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L (2012) Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem. Available at http://www.sciencedirect.com/science/article/pii/S0955286311002750

  28. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53:414–423

    Article  PubMed  CAS  Google Scholar 

  29. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102

    Article  PubMed  CAS  Google Scholar 

  30. Kawa K (1979) Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia. J Membr Biol 49:325–344

    Article  PubMed  CAS  Google Scholar 

  31. Keef KD, Hume JR, Zhong J (2001) Regulation of cardiac and smooth muscle Ca2+ channels (CaV1.2a, b) by protein kinases. Am J Physiol Cell Physiol 281:C1743–C1756

    PubMed  CAS  Google Scholar 

  32. Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW (2000) Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. J Physiol 528(Pt 1):39–52

    Article  PubMed  CAS  Google Scholar 

  33. Klein C, Sunahara RK, Hudson TY, Heyduk T, Howlett AC (2002) Zinc inhibition of cAMP signaling. J Biol Chem 277:11859–11865

    Article  PubMed  CAS  Google Scholar 

  34. Krezyel A, Maret W (2006) Zinc buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11:1049–1062

    Article  Google Scholar 

  35. Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U (2002) Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem 277:44327–44331

    Article  PubMed  CAS  Google Scholar 

  36. Maret W (2005) Zinc coordination environments in proteins determine zinc functions. J Trace Elem Med Biol 19:7–12

    Article  PubMed  Google Scholar 

  37. Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22:149–157

    Article  PubMed  CAS  Google Scholar 

  38. Noh KM, Kim YH, Koh JY (1999) Mediation by membrane protein kinase C of zinc-induced oxidative neuronal injury in mouse cortical cultures. J Neurochem 72:1609–1616

    Article  PubMed  CAS  Google Scholar 

  39. Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    PubMed  CAS  Google Scholar 

  40. Puceat M, Bony C, Jaconi M, Vassort G (1998) Specific activation of adenylyl cyclase V by a purinergic agonist. FEBS Lett 431:189–194

    Article  PubMed  CAS  Google Scholar 

  41. Sekler I, Sensi SL, Hershfinkel M, Silverman WF (2007) Mechanism and regulation of cellular zinc transport. Mol Med 13:337–343

    Article  PubMed  CAS  Google Scholar 

  42. Sims C, Harvey RD (2004) Redox modulation of basal and beta-adrenergically stimulated cardiac L-type Ca2+ channel activity by phenylarsine oxide. Br J Pharmacol 142:797–807

    Article  PubMed  CAS  Google Scholar 

  43. Spires S, Begenisich T (1995) Voltage-independent gating transitions in squid axon potassium channels. Biophys J 68:491–500

    Article  PubMed  CAS  Google Scholar 

  44. Tabata T, Ishida AT (1999) A zinc-dependent Cl current in neuronal somata. J Neurosci 19:5195–5204

    PubMed  CAS  Google Scholar 

  45. Tamada A, Hattori Y, Houzen H, Yamada Y, Sakuma I, Kitabatake A, Kanno M (1998) Effects of beta-adrenoceptor stimulation on contractility, [Ca2+]i, and Ca2+ current in diabetic rat cardiomyocytes. Am J Physiol 274:H1849–H1857

    PubMed  CAS  Google Scholar 

  46. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):ra11

    Google Scholar 

  47. Terrés-Martos C, Navarro-Alarcón M, Martín-Lagos F, López-García de la Serrana H, Pérez-Valero V, López-Martínez MC (1998) Serum zinc and copper concentrations and Cu/Zn ratios in patients with hepatopathies or diabetes. J Trace Elem Med Biol 12:44–49

    Article  PubMed  Google Scholar 

  48. Traboulsie A, Chemin J, Chevalier M, Quignard JF, Nargeot J, Lory P (2007) Subunit-specific modulation of T-type calcium channels by zinc. J Physiol 578:159–171

    Article  PubMed  CAS  Google Scholar 

  49. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18:6163–6175

    PubMed  CAS  Google Scholar 

  50. Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B (2011) Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 89:634–642

    Article  PubMed  CAS  Google Scholar 

  51. Turan B (2003) Zinc-induced changes in ionic currents of cardiomyocytes. Biol Trace Elem Res 94:49–60

    Article  PubMed  CAS  Google Scholar 

  52. Turan B, Fliss H, Desilets M (1997) Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am J Physiol 272:H2095–H2106

    PubMed  CAS  Google Scholar 

  53. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  54. van der Heyden MA, Wijnhoven TJ, Opthof T (2005) Molecular aspects of adrenergic modulation of cardiac L-type Ca2+ channels. Cardiovasc Res 65:28–39

    Article  PubMed  Google Scholar 

  55. Viola HM, Arthur PG, Hool LC (2007) Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 100:1036–1044

    Article  PubMed  CAS  Google Scholar 

  56. von Bulow V, Rink L, Haase H (2005) Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-alpha and IL-1 beta production in monocytes by elevation of guanosine 3′,5′-cyclic monophosphate. J Immunol 175:4697–4705

    Google Scholar 

  57. Wilson M, Hogstrand C, Maret W (2012) Picomolar concentrations of free zinc (II) ions regulate receptor protein-tyrosine phosphatase β activity. J Biol Chem 12:9322–9326

    Article  Google Scholar 

  58. Yatani A, Goto M (1983) The effect of extracellular low pH on the plateau current in isolated, single rat ventricular cells: a voltage clamp study. Jpn J Physiol 33:403–415

    Article  PubMed  CAS  Google Scholar 

  59. Zhang S, Kehl SJ, Fedida D (2001) Modulation of Kv1.5 potassium channel gating by extracellular zinc. Biophys J 81:125–136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Collazo, J., Díaz-García, C.M., López-Medina, A.I. et al. Zinc modulation of basal and β-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch - Eur J Physiol 464, 459–470 (2012). https://doi.org/10.1007/s00424-012-1162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1162-3

Keywords

Navigation