Skip to main content
Log in

Properties and functional implications of I h in hippocampal area CA3 interneurons

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The present study examines the biophysical properties and functional implications of I h in hippocampal area CA3 interneurons with somata in strata radiatum and lacunosum-moleculare. Characterization studies showed a small maximum h-conductance (2.6 ± 0.3 nS, n = 11), shallow voltage dependence with a hyperpolarized half-maximal activation (V 1/2 = −91 mV), and kinetics characterized by double-exponential functions. The functional consequences of I h were examined with regard to temporal summation and impedance measurements. For temporal summation experiments, 5-pulse mossy fiber input trains were activated. Blocking I h with 50 μM ZD7288 resulted in an increase in temporal summation, suggesting that I h supports sensitivity of response amplitude to relative input timing. Impedance was assessed by applying sinusoidal current commands. From impedance measurements, we found that I h did not confer theta-band resonance, but flattened the impedance–frequency relations instead. Double immunolabeling for hyperpolarization-activated cyclic nucleotide-gated proteins and glutamate decarboxylase 67 suggests that all four subunits are present in GABAergic interneurons from the strata considered for electrophysiological studies. Finally, a model of I h was employed in computational analyses to confirm and elaborate upon the contributions of I h to impedance and temporal summation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acsady L, Kali S (2007) Models, structure, function: the transformation of cortical signals in the dentate gyrus. Prog Brain Res 163:577–599

    Article  PubMed  CAS  Google Scholar 

  2. Alle H, Jonas P, Geiger JR (2001) PTP and LTP at a hippocampal mossy fiber–interneuron synapse. Proc Natl Acad Sci USA 98:14708–14713

    Article  PubMed  CAS  Google Scholar 

  3. Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D (2003) Heteromeric HCN1–HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol 549:347–359

    Article  PubMed  CAS  Google Scholar 

  4. Angelo K, London M, Christensen SR, Häusser M (2007) Local and global effects of I(h) distribution in dendrites of mammalian neurons. J Neurosci 27:8643–8653

    Article  PubMed  CAS  Google Scholar 

  5. Aponte Y, Lien CC, Reisinger E, Jonas P (2006) Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 574:229–243

    Article  PubMed  CAS  Google Scholar 

  6. Ascoli GA, Brown KM, Calixto E, Card JP, Galvan EJ, Perez-Rosello T, Barrionuevo G (2009) Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes. J Comp Neurol 515:677–695

    Article  PubMed  Google Scholar 

  7. Banks MI, Pearce RA, Smith PH (1993) Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. J Neurophysiol 70:1420–1432

    PubMed  CAS  Google Scholar 

  8. Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885

    Article  PubMed  CAS  Google Scholar 

  9. Bourdeau ML, Morin F, Laurent CE, Azzi M, Lacaille JC (2007) Kv4.3-mediated A-type K+ currents underlie rhythmic activity in hippocampal interneurons. J Neurosci 27:1942–1953

    Article  PubMed  CAS  Google Scholar 

  10. Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  PubMed  CAS  Google Scholar 

  11. Calixto E, Galvan EJ, Card JP, Barrionuevo G (2008) Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons. J Physiol 586:2695–2712

    Article  PubMed  CAS  Google Scholar 

  12. Campanac E, Daoudal G, Ankri N, Debanne D (2008) Downregulation of dendritic I h in CA1 pyramidal neurons after LTP. J Neurosci 28:8634–8643

    Article  Google Scholar 

  13. Chen C (2004) ZD 7288 inhibits postsynaptic glutamate receptor-mediated responses at hippocampal perforant path-granule cell synapses. Eur J Neurosci 19:643–649

    Article  PubMed  Google Scholar 

  14. Chen S, Wang J, Siegelbaum SA (2001) Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117:491–504

    Article  PubMed  CAS  Google Scholar 

  15. Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515:743–756

    Article  PubMed  CAS  Google Scholar 

  16. Chitwood RA, Jaffe DB (1998) Calcium-dependent spike-frequency accommodation in hippocampal CA3 nonpyramidal neurons. J Neurophysiol 80:983–988

    PubMed  CAS  Google Scholar 

  17. Cosgrove KE, Galvan EJ, Meriney SD, Barrionuevo G (2010) Area CA3 interneurons receive two spatially segregated mossy fiber inputs. Hippocampus 20:1003–1009

    Article  PubMed  CAS  Google Scholar 

  18. Day M, Carr DB, Ulrich S, Ilijic E, Tkatch T, Surmeier DJ (2005) Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 25:8776–8787

    Article  PubMed  CAS  Google Scholar 

  19. Decher N, Bundis F, Vajna R, Steinmeyer K (2003) KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Pflugers Arch 446:633–640

    Article  PubMed  CAS  Google Scholar 

  20. Deng P, Zhang Y, Xu ZC (2008) Inhibition of Ih in striatal cholinergic interneurons early after transient forebrain ischemia. J Cereb Blood Flow Metab 28:939–947

    Article  PubMed  CAS  Google Scholar 

  21. Destexhe A, Babloyantz A (1993) A model of the inward current Ih and its possible role in thalamocortical oscillations. Neuroreport 4:223–226

    Article  PubMed  CAS  Google Scholar 

  22. Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A (2000) Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83:2562–2579

    PubMed  CAS  Google Scholar 

  23. DiFrancesco D (1984) Characterization of the pace-maker current kinetics in calf purkinje fibers. J Physiol 348:341–367

    PubMed  CAS  Google Scholar 

  24. DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351:145–147

    Article  PubMed  CAS  Google Scholar 

  25. Erchova I, Kreck G, Heinemann U, Herz AV (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560:89–110

    Article  PubMed  CAS  Google Scholar 

  26. Galvan EJ, Calixto E, Barrionuevo G (2008) Bidirectional Hebbian plasticity at hippocampal mossy fiber synapses on CA3 interneurons. J Neurosci 28:14042–14055

    Article  PubMed  CAS  Google Scholar 

  27. Galvan EJ, Cosgrove KE, Barrionuevo G (2011) Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharm 60:740–747

    Article  CAS  Google Scholar 

  28. Giesbrecht CJ, Mackay JP, Silveira HB, Urban JH, Colmers WF (2010) Countervailing modulation of I h by neuropeptide Y and corticotrophin-releasing factor in basolateral amygdala as a possible mechanism for their effects on stress-related behaviors. J Neurosci 30:16970–16982

    Article  PubMed  CAS  Google Scholar 

  29. Giocomo LM, Hasselmo ME (2008) Time constants of h current in layer II stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J Neurosci 28:9414–9425

    Article  PubMed  CAS  Google Scholar 

  30. Giocomo LM, Zilli EA, Fransén E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722

    Article  PubMed  CAS  Google Scholar 

  31. Hajos N, Palhalmi J, Mann EO, Nemeth B, Paulsen O, Freund TF (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24:9127–9137

    Article  PubMed  CAS  Google Scholar 

  32. Hemond P, Migliore M, Ascoli GA, Jaffe DB (2009) The membrane response of hippocampal CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience 160:359–370

    Article  PubMed  CAS  Google Scholar 

  33. Henze DA, Urban NN, Barrionuevo G (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98:407–427

    Article  PubMed  CAS  Google Scholar 

  34. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: a database to support computational neuroscience. J Comput Neurosci 17:7–11

    Article  PubMed  Google Scholar 

  35. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  36. Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545:783–805

    Article  PubMed  CAS  Google Scholar 

  37. Hutcheon B, Miura RM, Puil E (1996) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:683–697

    PubMed  CAS  Google Scholar 

  38. Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:698–714

    PubMed  CAS  Google Scholar 

  39. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  CAS  Google Scholar 

  40. Jung S, Jones TD, Lugo JN Jr, Sheerin AH, Miller JW, D'Ambrosio R, Anderson AE, Poolos NP (2007) Progressive dendritic HCN channelopathy during epileptogenesis in the rat pilocarpine model of epilepsy. J Neurosci 27:13012–13021

    Article  PubMed  CAS  Google Scholar 

  41. Kamiya H, Shinozaki H, Yamamoto C (1996) Activation of metabotropic glutamate receptor type 2/3suppresses transmission at rat hippocampal mossy fibre synapse. J Physiol 493:447–455

    PubMed  CAS  Google Scholar 

  42. Klausberger T, Magill PJ, Márton LF, Roberts DB, Cobden PM, Buzsáki G, Somogyi P (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  PubMed  CAS  Google Scholar 

  43. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  44. Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybernetics 50:15–33

    Article  CAS  Google Scholar 

  45. Konig P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130–137

    Article  PubMed  CAS  Google Scholar 

  46. Kuisle M, Lüthi A (2010) Hyperpolarization-activated cation channels. In: Kew J, Davies CH (eds) Ion channels: from structure to function. Oxford University Press, Oxford, pp 183–206

    Google Scholar 

  47. Kullmann DM, Lamsa KP (2007) Long-term synaptic plasticity in hippocampal interneurons. Nat Rev Neurosci 8:687–699

    Article  PubMed  CAS  Google Scholar 

  48. Kullmann PH, Wheeler DW, Beacom J, Horn JP (2004) Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT. J Neurophysiol 91:542–554

    Article  PubMed  Google Scholar 

  49. Lawrence JJ, Grimspan ZM, McBain CJ (2004) Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. J Physiol 554:175–193

    Article  PubMed  CAS  Google Scholar 

  50. Lewis AS, Schwartz E, Chan CS, Noam Y, Shin M, Wadman WJ, Surmeier DJ, Baram TZ, Macdonald RL, Chetkovich DM (2009) Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J Neurosci 29:6250–6265

    Article  PubMed  CAS  Google Scholar 

  51. Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068

    PubMed  CAS  Google Scholar 

  52. Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications—making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    Article  PubMed  CAS  Google Scholar 

  53. Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens–alveus interneurones. J Physiol 497:119–130

    PubMed  CAS  Google Scholar 

  54. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

    PubMed  CAS  Google Scholar 

  55. Magee JC (1999) Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2:508–514

    Article  PubMed  CAS  Google Scholar 

  56. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  PubMed  CAS  Google Scholar 

  57. Marcelin B, Chauviere L, Becker A, Migliore M, Esclapez M, Bernard C (2009) h channel dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol Dis 33:436–447

    Article  PubMed  CAS  Google Scholar 

  58. Martina M, Jonas P (1997) Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J Physiol 505:593–603

    Article  PubMed  CAS  Google Scholar 

  59. Maurer AP, Cowen SL, Burke SN, Barnes CA, McNaughton BL (2006) Phase precession in hippocampal interneurons showing strong functional coupling to individual pyramidal cells. J Neurosci 26:13485–13492

    Article  PubMed  CAS  Google Scholar 

  60. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    PubMed  CAS  Google Scholar 

  61. McNaughton BL, Barnes CA, O'Keefe J (1983) The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52:41–49

    Article  PubMed  CAS  Google Scholar 

  62. Mehta MR, Quirk MC, Wilson MA (2000) Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25:707–715

    Article  PubMed  CAS  Google Scholar 

  63. Migliore M, Shepherd GM (2005) Opinion: an integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 6:810–818

    Article  PubMed  CAS  Google Scholar 

  64. Mori M, Gahwiler BH, Gerber U (2007) Recruitment of an inhibitory hippocampal network after bursting in a single granule cell. Proc Natl Acad Sci USA 104:7640–7645

    Article  PubMed  CAS  Google Scholar 

  65. Narayanan R, Johnston D (2007) Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56:1061–1075

    Article  PubMed  CAS  Google Scholar 

  66. Narayanan R, Johnston D (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J Neurosci 28:5846–5860

    Article  PubMed  CAS  Google Scholar 

  67. O'Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Article  PubMed  Google Scholar 

  68. Oren I, Mann EO, Paulsen O, Hajos N (2006) Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. J Neurosci 26:9923–9934

    Article  PubMed  CAS  Google Scholar 

  69. Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  CAS  Google Scholar 

  70. Parra P, Gulyas AI, Miles R (1998) How many subtypes of inhibitory cells in the hippocampus? Neuron 20:983–993

    Article  PubMed  CAS  Google Scholar 

  71. Pian P, Bucchi A, Robinson RB, Siegelbaum SA (2006) Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2. J Gen Physiol 128:593–604

    Article  PubMed  CAS  Google Scholar 

  72. Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O (2000) Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J Physiol 529:205–213

    Article  PubMed  CAS  Google Scholar 

  73. Poolos NP, Bullis JB, Roth MK (2006) Modulation of h-channels in hippocampal pyramidal neurons by p38 mitogen-activated protein kinase. J Neurosci 26:7995–8003

    Article  PubMed  CAS  Google Scholar 

  74. Proenza C, Angoli D, Agranovich E, Macri V, Accili EA (2002) Pacemaker channels produce an instantaneous current. J Biol Chem 277:5101–5109

    Article  PubMed  CAS  Google Scholar 

  75. Proenza C, Yellen G (2006) Distinct populations of HCN pacemaker channels produce voltage dependent and voltage-independent currents. J Gen Physiol 127:183–190

    Article  PubMed  CAS  Google Scholar 

  76. Puil E, Gimbarzevsky B, Miura RM (1986) Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J Neurophysiol 55:995–1016

    PubMed  CAS  Google Scholar 

  77. Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Article  PubMed  Google Scholar 

  78. Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  PubMed  CAS  Google Scholar 

  79. Rodrigues AR, Oertel D (2006) Hyperpolarization-activated currents regulate excitability in stellate cells of the mammalian ventral cochlear nucleus. J Neurophysiol 95:76–87

    Article  PubMed  Google Scholar 

  80. Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization activated pacemaker channels. Ann NY Acad Sci 868:741–764

    Article  PubMed  CAS  Google Scholar 

  81. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    Article  PubMed  CAS  Google Scholar 

  82. Slawinska U, Kasicki S (1998) The frequency of rat's hippocampal theta rhythm is related to the speed of locomotion. Brain Res 796:327–331

    Article  PubMed  CAS  Google Scholar 

  83. Solomon JS, Nerbonne JM (1993) Two kinetically distinct components of hyperpolarization activated current in rat superior colliculus-projecting neurons. J Physiol 469:291–313

    PubMed  CAS  Google Scholar 

  84. Svoboda KR, Lupica CR (1998) Opioid inhibition of hippocampal interneurons via modulation of potassium and hyperpolarization-activated cation (Ih) currents. J Neurosci 18:7084–7098

    PubMed  CAS  Google Scholar 

  85. Szabadics J, Soltesz I (2009) Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus. J Neurosci 29:4239–4251

    Article  PubMed  CAS  Google Scholar 

  86. Tanaka S, Wu N, Hsaio C-F, Turman J, Chandler SH (2003) Development of inward rectification and control of membrane excitability in mesencephalic V neurons. J Neurophysiol 89:1288–1298

    Article  PubMed  Google Scholar 

  87. Tohidi V, Nadim F (2009) Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. J Neurosci 29:6427–6435

    Article  PubMed  CAS  Google Scholar 

  88. Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ (2000) Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 20:8279–8289

    PubMed  CAS  Google Scholar 

  89. Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Article  PubMed  CAS  Google Scholar 

  90. Vida I, Frotscher M (2000) A hippocampal interneuron associated with the mossy fiber system. Proc Natl Acad Sci USA 97:1275–1280

    Article  PubMed  CAS  Google Scholar 

  91. Williams SR, Stuart GJ (2000) Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J Neurophysiol 83:3177–3182

    PubMed  CAS  Google Scholar 

  92. Yamada R, Kuba H, Ishii TM, Ohmori H (2005) Hyperpolarization-activated cyclic nucleotide gated cation channels regulate auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 25:8867–8877

    Article  PubMed  CAS  Google Scholar 

  93. Yan H, Li Q, Fleming R, Madison RD, Wilson WA, Swartzwelder HS (2009) Developmental sensitivity of hippocampal interneurons to ethanol: involvement of the hyperpolarization activated current, Ih. J Neurophysiol 101:67–83

    Article  PubMed  CAS  Google Scholar 

  94. Yu H, Wu J, Potapova I, Wymore RT, Holmes B, Zuckerman J, Pan Z, Wang H, Shi W, Robinson RB, El-Maghrabi MR, Benjamin W, Dixon J, McKinnon D, Cohen IS, Wymore R (2001) MinK-related peptide 1: a beta subunit for the HCN ion channel subunit family enhances expression and speeds activation. Circ Res 88:E84–87

    Article  PubMed  CAS  Google Scholar 

  95. Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. J Physiol 588:2109–2132

    Article  PubMed  CAS  Google Scholar 

  96. Zolles G, Klocker N, Wenzel D, Weisser-Thomas J, Fleischmann BK, Roeper J, Fakler B (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 52:1027–1036

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants NS24288 (GB) and NS046423 (E.T.). We thank Paul Kullmann for technical assistance with the data acquisition software and J. Patrick Card for assistance with the assessment of the immunolabeling data. Thanks to Weimin C. Hong for assistance with capturing the confocal images for Fig. 3. We also thank Paul Kullmann and Jon Johnson for invaluable discussion and advice regarding the data analysis and computational modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Barrionuevo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.51 Mb)

Appendix

Appendix

I h was computed as I h = g h,max X (V − E h), where X = X f F + X s (1 − F). Parameters X f and X s are fast and slow gating variables, F is a voltage-dependent function (see below) describing the fractional contributions of fast activation and deactivation (Fig. 2e), and other terms are as described previously. Because the time constant equations are different for activation and deactivation, the gating variables need to be computed using the appropriate time constant function. In order to decide whether I h was undergoing activation or deactivation, the normalized h-conductance (X) was compared to the normalized steady-state conductance (X ) at each time step and the following logic was applied:

$$ \begin{array}{*{20}{c}} {\text{IF}} \hfill & {X\left( {t - {\text{d}}t} \right) \leqslant {X_{\infty }}(t),\;{\text{THEN}}\;{I_{\text{h}}}\;{\text{is}}\;{\text{activating}}} \hfill \\ {\text{ELSE}} \hfill & {{I_{\text{h}}}\;{\text{is}}\;{\text{deactivating}}} \hfill \\ \end{array} $$

Hence, if I h was determined to be activating, the gating variables (X f and X s) were updated using the activation time constants, and X(t) and I h(t) were computed using the updated gating variables, otherwise the deactivation time constants were used:

$$ \begin{array}{*{20}{c}} {X \leqslant {X_{\infty }}:} \hfill & {{\tau_{{{\text{A,f}}}}}\frac{{{\text{d}} {X_{\text{f}}}}}{{{\text{d}}t}} = {X_{\infty }} - {X_{\text{f}}}} \hfill \\ \end{array} $$
(7)
$$ {\tau_{{{\text{A,s}}}}}\frac{{{\text{d}} {X_{\text{s}}}}}{{{\text{d}}t}} = {X_{\infty }} - {X_{\text{s}}} $$
(8)
$$ \begin{array}{*{20}{c}} {X > {X_{\infty }}:} \hfill & {{\tau_{{{\text{D,f}}}}}\frac{{{\text{d}} {X_{\text{f}}}}}{{{\text{d}}t}} = {X_{\infty }} - {X_{\text{f}}}} \hfill \\ \end{array} $$
(9)
$$ {\tau_{{{\text{D,s}}}}}\frac{{{\text{d}} {X_{\text{s}}}}}{{d{\text{t}}}} = {X_{\infty }} - {X_{\text{s}}} $$
(10)

All equations were solved via the Euler method, for example, Eq. 6 was solved as follows:

$$ V(t) = V(t - {\text{d}}t) - \frac{{{\text{d}}t}}{{{C_{\text{m}}}}}\;\left( {{I_{\text{h}}}(t) + {g_{\text{L}}} (V(t - {\text{d}}t) - {E_{\text{L}}})} \right) + \frac{{{\text{d}}t}}{{{C_{\text{m}}}}}{I_{\text{ext}}}(t) $$
(11)

The voltage-dependent functions used to describe the kinetic parameters were based on curve fits to the averaged data in Fig. 2 (c, d). The following equation was used for τ A,s, τ D,s, and τ A,f:

$$ \begin{array}{*{20}{c}} {{\tau_{{j,i}}}(V) = \frac{x}{{a\,\exp \,\left( {\frac{V}{{{k_1}}}} \right) + b\,\exp \,\left( {\frac{{ - V}}{{{k_2}}}} \right)}},} \hfill & {i = {\text{ f}},{\text{s}};j = {\text{ A}},{\text{D}}} \hfill \\ \end{array} $$
(12)

The resulting fit parameter sets were {x = 122.1, a = 1.955, b = 0.01528, k 1 = 22.45, k 2 = 34.69} for τ A,s, {x = 30, a = 320.2, b = 0.05197, k 1 = 7.243, k 2 = 63.85} for τ D,s, and {x = 129.5, a = 12.93, b = 0.2166, k 1 = 22.09, k 2 = 40.07} for τ A,f. A linear fit was used for the fast deactivation time constant, τ D,f(V) = aV + b, with a = 0.3843 and b = 47.34 (see black curves in Fig. 2c, d). The fractional contributions of the fast current components (Fig. 2e) were described by the superimposition of two sigmoid functions:

$$ F(V) = \frac{{{a_1} - B}}{{1 + \exp \,\left( {\frac{{V - V{h_1}}}{{{k_1}}}} \right)}} + \frac{{{a_2} - B}}{{1 + \exp \,\left( { - \frac{{V - V{h_2}}}{{{k_2}}}} \right)}} + B $$
(13)

The resulting parameter sets were {a 1 = 0.6367, a 2 = 0.6233, Vh 1 = −101.1, Vh 2 = −65, k 1 = 9.701, k 2 = 0.3813, B = 0.4499}. The supplementary materials contain additional information regarding the behavior of this model (Figs. S5, S6, and S7). Sample code is available on https://senselab.med.yale.edu/ModelDB (accession number: 140732) [34].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, W.D., Galván, E.J., Mauna, J.C. et al. Properties and functional implications of I h in hippocampal area CA3 interneurons. Pflugers Arch - Eur J Physiol 462, 895–912 (2011). https://doi.org/10.1007/s00424-011-1025-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1025-3

Keywords

Navigation