Skip to main content

Advertisement

Log in

Angiotensin-(1–7) and angiotension II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The rostral ventrolateral medulla (RVLM) plays a pivotal role in regulating sympathetic vasomotor activity. The cardiac sympathetic afferent reflex (CSAR) contributes to the enhanced sympathetic outflow in chronic heart failure and hypertension. The aim of the present study was to determine whether angiotensin (Ang) II and Ang-(1–7) in the RVLM modulate the CSAR and sympathetic activity. Bilateral sinoaortic denervation and vagotomy were carried out in anesthetized rats. The CSAR was evaluated as the renal sympathetic nerve activity (RSNA) response to epicardial application of capsaicin. The effects of bilateral microinjection of Ang II, Ang-(1–7), the AT1 receptor antagonist losartan or the Mas receptor antagonist d-alanine-Ang-(1–7) (A-779) into the RVLM were determined. Either Ang II or Ang-(1–7) enhanced the CSAR as well as increased RSNA and mean arterial pressure (MAP) in a dose-dependent manner. Pretreatment with losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan eliminated the effects of Ang-(1–7). The RVLM microinjection of losartan alone had no direct effect on the CSAR, RSNA, and MAP, but A-779 alone attenuated the CSAR and decreased RSNA and MAP. These results indicate that Ang-(1–7) is as effective as Ang II in sensitizing the CSAR and increasing sympathetic outflow. In contrast to Ang II, the effects of Ang-(1–7) are not mediated by AT1 receptors but by Mas receptors. Mas receptors, but not the AT1 receptors, in the RVLM are involved in the tonic control of the CSAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FA (1998) Angiotensin receptors in the nervous system. Brain Res Bull 47:17–28

    Article  CAS  PubMed  Google Scholar 

  2. Averill DB, Tsuchihashi T, Khosla MC, Ferrario CM (1994) Losartan, nonpeptide angiotensin II-type 1 (AT1) receptor antagonist, attenuates pressor and sympathoexcitatory responses evoked by angiotensin II and L-glutamate in rostral ventrolateral medulla. Brain Res 665:245–252

    Article  CAS  PubMed  Google Scholar 

  3. Bourassa EA, Sved AF, Speth RC (2009) Angiotensin modulation of rostral ventrolateral medulla (RVLM) in cardiovascular regulation. Mol Cell Endocrinol 302:167–175

    Article  CAS  PubMed  Google Scholar 

  4. Chan JY, Wang LL, Wu KL, Chan SH (2001) Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation 104:1676–1681

    Article  CAS  PubMed  Google Scholar 

  5. Chan SH, Wang LL, Wang SH, Chan JY (2001) Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br J Pharmacol 133:606–614

    Article  CAS  PubMed  Google Scholar 

  6. Dampney RA, Fontes MA, Hirooka Y, Horiuchi J, Potts PD, Tagawa T (2002) Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 29:467–472

    Article  CAS  PubMed  Google Scholar 

  7. De Mello WC (2009) Opposite effects of angiotensin II and angiotensin (1–7) on impulse propagation, excitability and cardiac arrhythmias. Is the overexpression of ACE2 arrhythmogenic? Regul Pept 153:7–10

    Article  PubMed  CAS  Google Scholar 

  8. Du YH, Chen AF (2007) A "love triangle" elicited by electrochemistry: complex interactions among cardiac sympathetic afferent, chemo-, and baroreflexes. J Appl Physiol 102:9–10

    Article  CAS  PubMed  Google Scholar 

  9. Duan YC, Xu B, Shi Z, Gao J, Zhang SJ, Wang W, Chen Q, Zhu GQ (2009) Nucleus of solitary tract mediates cardiac sympathetic afferent reflex in rats. Pflugers Arch 459:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira AJ, Raizada MK (2008) Are we poised to target ACE2 for the next generation of antihypertensives? J Mol Med 86:685–690

    Article  CAS  PubMed  Google Scholar 

  11. Fontes MA, Silva LC, Campagnole-Santos MJ, Khosla MC, Guertzenstein PG, Santos RA (1994) Evidence that angiotensin-(1–7) plays a role in the central control of blood pressure at the ventro-lateral medulla acting through specific receptors. Brain Res 665:175–180

    Article  CAS  PubMed  Google Scholar 

  12. Gurley SB, Coffman TM (2008) Angiotensin-converting enzyme 2 gene targeting studies in mice: mixed messages. Exp Physiol 93:538–542

    Article  CAS  PubMed  Google Scholar 

  13. Guyenet PG, Haselton JR, Sun MK (1989) Sympathoexcitatory neurons of the rostroventrolateral medulla and the origin of the sympathetic vasomotor tone. Prog Brain Res 81:105–116

    Article  CAS  PubMed  Google Scholar 

  14. Iusuf D, Henning RH, van Gilst WH, Roks AJ (2008) Angiotensin-(1–7): pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharmacol 585:303–312

    Article  CAS  PubMed  Google Scholar 

  15. Katovich MJ, Grobe JL, Raizada MK (2008) Angiotensin-(1–7) as an antihypertensive, antifibrotic target. Curr Hypertens Rep 10:227–232

    Article  CAS  PubMed  Google Scholar 

  16. Longhurst JC, Tjen ALS, Fu LW (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes. Ann N Y Acad Sci 940:74–95

    Article  CAS  PubMed  Google Scholar 

  17. Ma R, Zucker IH, Wang W (1997) Central gain of the cardiac sympathetic afferent reflex in dogs with heart failure. Am J Physiol 273:H2664–H2671

    CAS  PubMed  Google Scholar 

  18. Malliani A, Montano N (2002) Emerging excitatory role of cardiovascular sympathetic afferents in pathophysiological conditions. Hypertension 39:63–68

    Article  CAS  PubMed  Google Scholar 

  19. Pan HL, Chen SR (2002) Myocardial ischemia recruits mechanically insensitive cardiac sympathetic afferents in cats. J Neurophysiol 87:660–668

    PubMed  Google Scholar 

  20. Pyner S, Coote JH (1999) Identification of an efferent projection from the paraventricular nucleus of the hypothalamus terminating close to spinally projecting rostral ventrolateral medullary neurons. Neuroscience 88:949–957

    Article  CAS  PubMed  Google Scholar 

  21. Pyner S, Coote JH (2000) Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience 100:549–556

    Article  CAS  PubMed  Google Scholar 

  22. Santos RA, Ferreira AJ, Simoes e Silva AC (2008) Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol 93:519–527

    Article  CAS  PubMed  Google Scholar 

  23. Santos RA, Haibara AS, Campagnole-Santos MJ, Simoes e Silva AC, Paula RD, Pinheiro SV, Leite MF, Lemos VS, Silva DM, Guerra MT, Khosla MC (2003) Characterization of a new selective antagonist for angiotensin-(1–7), D-pro7-angiotensin-(1–7). Hypertension 41:737–743

    Article  CAS  PubMed  Google Scholar 

  24. Santos RA, Silva AC Simoes e, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor. Mas Proc Natl Acad Sci U S A 100:8258–8263

    Article  CAS  Google Scholar 

  25. Schreihofer AM, Sved AF (1994) Use of sinoaortic denervation to study the role of baroreceptors in cardiovascular regulation. Am J Physiol 266:R1705–R1710

    CAS  PubMed  Google Scholar 

  26. Shafton AD, Ryan A, Badoer E (1998) Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res 801:239–243

    Article  CAS  PubMed  Google Scholar 

  27. Silva-Barcellos NM, Frezard F, Caligiorne S, Santos RA (2001) Long-lasting cardiovascular effects of liposome-entrapped angiotensin-(1–7) at the rostral ventrolateral medulla. Hypertension 38:1266–1271

    Article  CAS  PubMed  Google Scholar 

  28. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243

    Article  CAS  PubMed  Google Scholar 

  29. Varagic J, Trask AJ, Jessup JA, Chappell MC, Ferrario CM (2008) New angiotensins. J Mol Med 86:663–671

    Article  CAS  PubMed  Google Scholar 

  30. Wang HJ, Zhang F, Zhang Y, Gao XY, Wang W, Zhu GQ (2005) AT1 receptor in paraventricular nucleus mediates the enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Auton Neurosci 121:56–63

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Ma R (2000) Cardiac sympathetic afferent reflexes in heart failure. Heart Fail Rev 5:57–71

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Schultz HD, Ma R (1999) Cardiac sympathetic afferent sensitivity is enhanced in heart failure. Am J Physiol 277:H812–H817

    CAS  PubMed  Google Scholar 

  33. Wang WZ, Gao L, Wang HJ, Zucker IH, Wang W (2008) Interaction between cardiac sympathetic afferent reflex and chemoreflex is mediated by the NTS AT1 receptors in heart failure. Am J Physiol Heart Circ Physiol 295:H1216–H1226

    Article  CAS  PubMed  Google Scholar 

  34. Yang SN, Lippoldt A, Jansson A, Phillips MI, Ganten D, Fuxe K (1997) Localization of angiotensin II AT1 receptor-like immunoreactivity in catecholaminergic neurons of the rat medulla oblongata. Neuroscience 81:503–515

    Article  CAS  PubMed  Google Scholar 

  35. Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ (2008) Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 93:746–753

    Article  PubMed  Google Scholar 

  36. Zhong MK, Gao J, Zhang F, Xu B, Fan ZD, Wang W, Zhu GQ (2009) Reactive oxygen species in rostral ventrolateral medulla modulate cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 197:297–304

    Article  CAS  Google Scholar 

  37. Zhong MK, Shi Z, Zhou LM, Gao J, Liao ZH, Wang W, Gao XY, Zhu GQ (2008) Regulation of cardiac sympathetic afferent reflex by GABAA and GABAB receptors in paraventricular nucleus in rats. Eur J Neurosci 27:3226–3232

    Article  PubMed  Google Scholar 

  38. Zhu GQ, Gao L, Li Y, Patel KP, Zucker IH, Wang W (2004) AT1 receptor mRNA antisense normalizes enhanced cardiac sympathetic afferent reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 287:H1828–H1835

    Article  CAS  PubMed  Google Scholar 

  39. Zhu GQ, Gao L, Patel KP, Zucker IH, Wang W (2004) ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. J Appl Physiol 97:1746–1754

    Article  CAS  PubMed  Google Scholar 

  40. Zhu GQ, Xu Y, Zhou LM, Li YH, Fan LM, Wang W, Gao XY, Chen Q (2009) Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp Physiol 945:785–794

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Chinese National Natural Science fund (30870908, 30670768, and 30670767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, LM., Shi, Z., Gao, J. et al. Angiotensin-(1–7) and angiotension II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats. Pflugers Arch - Eur J Physiol 459, 681–688 (2010). https://doi.org/10.1007/s00424-010-0793-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0793-5

Keywords

Navigation