Skip to main content

Advertisement

Log in

Blebbistatin: use as inhibitor of muscle contraction

  • Cardiovascular System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Blebbistatin (BLEB) is a recently discovered compound that inhibits myosin-II ATPase activity. In this study, we tested BLEB in intact and skinned isolated rat cardiac trabeculae, rat intact myocytes, and single rabbit psoas myofibrils. BLEB (10 μM) reduced twitch force and cell shortening that was reversed by exposure to light. BLEB treatment of skinned trabeculae in the dark (1 hr) reduced Ca2+-activated force \(\left( {{\text{EC}}_{50} = 0.38 \pm 0.03\;{\text{ $ \mu $ M}}} \right)\). Rapid (<5 ms) BLEB application in Ca2+-activated rabbit myofibrils reduced force proportional to [BLEB]. Two-photon Indo1-AM ratio-metric confocal line-scan microscopy revealed no impact of BLEB on the cytosolic Ca2+ transient. BLEB reduced contractile force in skinned trabeculae without affecting tension-dependent myofilament ATPase activity. We conclude that BLEB specifically uncouples cardiac myofilament activation from Ca2+ activation without affecting EC coupling or cross-bridge cycling parameters. This agent could be useful to uncouple myofilament contractility from electrical events that lead to sarcoplasmic reticulum Ca2+ release in the cardiac myocyte (uncoupling agent) However, the compound is very sensitive to light, a property that limits its application to mechanistic physiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allingham JS, Smith R, Rayment I (2005) The structural basis of blebbistatin inhibition and specificity for myosin II. Nat Struct Mol Biol 12:378–379

    Article  PubMed  CAS  Google Scholar 

  2. Alpert NR, Blanchard EM, Mullieri LA (1989) Tension-independent heat in rabbit papillary muscle. J Physiol 414:433–453

    PubMed  CAS  Google Scholar 

  3. An SS, Laudadio RE, Lai J, Rogers RA, Fredberg JJ (2002) Stiffness changes in cultured airway smooth muscle cells. Am J Physiol Cell Physiol 283:C792–C801

    PubMed  CAS  Google Scholar 

  4. Andruchov O, Andruchova O, Galler S (2006) The catch state of mollusc catch muscle is established during activation: experiments on skinned fibre preparations of the anterior byssus retractor muscle of Mytilus edulis L. using the myosin inhibitors orthovanadate and blebbistatin. J Exp Biol 209:4319–4328

    Article  PubMed  CAS  Google Scholar 

  5. Backx PH, Gao WD, Azan-Backx MD, Marban E (1994) Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics. J Physiol 476:487–500

    PubMed  CAS  Google Scholar 

  6. Bell MG, Lankford EB, Gonye GE, Ellis-Davies GC, Regnier M, Martyn DA, Barsotti RJ (2006) Kinetics of cardiac thin-filament activation probed by fluorescence polarization of rhodamine-labeled troponin C in skinned guinea pig trabeculae. Biophys J 90:531–543

    Article  PubMed  CAS  Google Scholar 

  7. Blanchard EM, Smith GL, Allen DG, Alpert NR (1990) The effects of 2,3-butanedione monoxime on initial heat, tension, and aequorin light output of ferret papillary muscles. Pflugers Arch 416:219–221

    Article  PubMed  CAS  Google Scholar 

  8. Cazorla O, Lacampagne A, Fauconnier J, Vassort G (2003) SR33805, a Ca2+ antagonist with length-dependent Ca2+-sensitizing properties in cardiac myocytes. Br J Pharmacol 139:99–108

    Article  PubMed  CAS  Google Scholar 

  9. Daniels MC, Naya T, Rundell VL, de Tombe PP (2007) Development of contractile dysfunction in rat heart failure: hierarchy of cellular events. Am J Physiol Regul Integr Comp Physiol 293:R284–R292

    PubMed  CAS  Google Scholar 

  10. de Tombe PP (2003) Cardiac myofilaments: mechanics and regulation. J Biomech 36:721–730

    Article  PubMed  Google Scholar 

  11. de Tombe PP, Belus A, Piroddi N, Scellini B, Walker JS, Martin AF, Tesi C, Poggesi C (2007) Myofilament calcium sensitivity does not affect cross-bridge activation-relaxation kinetics. Am J Physiol Regul Integr Comp Physiol 292:R1129–R1136

    PubMed  Google Scholar 

  12. de Tombe PP, Burkhoff D, Hunter WC (1992) Comparison between the effects of 2–3 butanedione monoxime (BDM) and calcium chloride on myocardial oxygen consumption. J Mol Cell Cardiol 24:783–797

    Article  PubMed  Google Scholar 

  13. de Tombe PP, Stienen GJ (2007) Impact of temperature on cross-bridge cycling kinetics in rat myocardium. J Physiol 584:591–600

    Article  PubMed  Google Scholar 

  14. Dou Y, Arlock P, Arner A (2007) Blebbistatin specifically inhibits actin-myosin interaction in mouse cardiac muscle. Am J Physiol Cell Physiol 293:C1148–C1153

    Article  PubMed  CAS  Google Scholar 

  15. Eddinger TJ, Meer DP, Miner AS, Meehl J, Rovner AS, Ratz PH (2007) Potent inhibition of arterial smooth muscle tonic contractions by the selective myosin II inhibitor, blebbistatin. J Pharmacol Exp Ther 320:865–870

    Article  PubMed  CAS  Google Scholar 

  16. Fabiato A, Fabiato F (1979) Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 75:463–505

    CAS  Google Scholar 

  17. Farman GP, Allen EJ, Gore D, Irving TC, de Tombe PP (2007) Interfilament spacing is preserved during sarcomere length isometric contractions in rat cardiac trabeculae. Biophys J 92:L73–L75

    Article  PubMed  CAS  Google Scholar 

  18. Farman GP, Walker JS, de Tombe PP, Irving TC (2006) Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium. Am J Physiol Heart Circ Physiol 291:H1847–H1855

    Article  PubMed  CAS  Google Scholar 

  19. Fedorov VV, Lozinsky IT, Sosunov EA, Anyukhovsky EP, Rosen MR, Balke CW, Efimov IR (2007) Application of blebbistatin as an excitation–contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm 4:619–626

    Article  PubMed  Google Scholar 

  20. Galler S, Hopflinger MC, Andruchov O, Andruchova O, Grassberger H (2005) Effects of vanadate, phosphate and 2,3-butanedione monoxime (BDM) on skinned molluscan catch muscle. Pflugers Arch 449:372–383

    Article  PubMed  CAS  Google Scholar 

  21. Gwathmey JK, Hajjar RJ, Solaro RJ (1991) Contractile deactivation and uncoupling of crossbridges. Effects of 2,3-butanedione monoxime on mammalian myocardium. Circ Res 69:1280–1292

    PubMed  CAS  Google Scholar 

  22. Horiuti K, Higuchi H, Umazume Y, Konishi M, Okazaki O, Kurihara S (1988) Mechanism of action of 2, 3-butanedione 2-monoxime on contraction of frog skeletal muscle fibres. J Muscle Res Cell Motil 9:156–164

    Article  PubMed  CAS  Google Scholar 

  23. Kettlewell S, Walker NL, Cobbe SM, Burton FL, Smith GL (2004) The electrophysiological and mechanical effects of 2,3-butane-dione monoxime and cytochalasin-D in the Langendorff perfused rabbit heart. Exp Physiol 89:163–172

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67:39–67

    Article  PubMed  CAS  Google Scholar 

  25. Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279:35557–35563

    Article  PubMed  CAS  Google Scholar 

  26. Limouze J, Straight AF, Mitchison T, Sellers JR (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25:337–341

    Article  PubMed  CAS  Google Scholar 

  27. Lucas-Lopez C, Patterson S, Blum T, Straight AF, Toth J, Slawin AMZ, Mitchison TJ, Sellers JR, Westwood NJ (2005) Absolute stereochemical assignment and fluorescence tuning of the small molecule tool, (−)-Blebbistatin. Eur J Org Chem 2005:1736–1740

    Article  Google Scholar 

  28. Maesako M, Araki J, Lee S, Doi Y, Imaoka T, Iribe G, Mohri S, Hirakawa M, Harada M, Suga H (2000) 2,3-Butanedione monoxime suppresses primarily total calcium handling in canine heart. Jpn J Physiol 50:543–551

    Article  PubMed  CAS  Google Scholar 

  29. Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR (1989) Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res 65:1441–1444

    PubMed  CAS  Google Scholar 

  30. Patterson S, Lucas-Lopez C, Westwood NJ (2004) Selective chemical intervention in biological systems: the small molecule tool, (S)-(-)-Blebbistatin. In: Proceedings of The Chemical Theatre of Biological Systems, Beilstein Institut, Frankfurt am Main, pp 147–167

  31. Rice JJ, de Tombe PP (2004) Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle. Prog Biophys Mol Biol 85:179–195

    Article  PubMed  CAS  Google Scholar 

  32. Sakamoto T, Limouze J, Combs CA, Straight AF, Sellers JR (2005) Blebbistatin, a myosin II inhibitor, is photoinactivated by blue light. Biochemistry 44:584–588

    Article  PubMed  CAS  Google Scholar 

  33. Stapleton MT, Fuchsbauer CM, Allshire AP (1998) BDM drives protein dephosphorylation and inhibits adenine nucleotide exchange in cardiomyocytes. Am J Physiol 275:H1260–H1266

    PubMed  CAS  Google Scholar 

  34. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299:1743–1747

    Article  PubMed  CAS  Google Scholar 

  35. Watanabe M (1993) Effect of 2,3-butanedione monoxime on smooth-muscle contraction of guinea-pig portal vein. Pflugers Arch 425:462–468

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na(+)/Ca(2+) exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132:1317–1325

    Article  PubMed  CAS  Google Scholar 

  37. Yaku H, Slinker BK, Mochizuki T, Lorell BH, LeWinter MM (1993) Use of 2,3-butanedione monoxime to estimate nonmechanical VO2 in rabbit hearts. Am J Physiol Heart Circ Physiol 265:H834–H842

    CAS  Google Scholar 

  38. Zhao Y, Kawai M (1994) BDM affects nucleotide binding and force generation steps of the cross-bridge cycle in rabbit psoas muscle fibers. Am J Physiol 266:C437–C447

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants HL-62426, HL-75494, HL-07692, the American Heart Association, a Leducq Trans Atlantic Network Award, the Association Française contre les Myopathies, and a Région Languedoc-Roussillon Award. OC and AL are established investigators of CNRS, and PPT was supported by INSERM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter P. de Tombe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farman, G.P., Tachampa, K., Mateja, R. et al. Blebbistatin: use as inhibitor of muscle contraction. Pflugers Arch - Eur J Physiol 455, 995–1005 (2008). https://doi.org/10.1007/s00424-007-0375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0375-3

Keywords

Navigation