Skip to main content
Log in

Molecular cloning and functional characterization of the Aplysia FMRFamide-gated Na+ channel

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

FMRFamide-gated Na+ channel (FaNaC) is the only known peptide-gated ion channel, which belongs to the epithelial Na+ channel/degenerin (ENaC/DEG) family. We have cloned a putative FaNaC from the Aplysia kurodai CNS library using PCR, and examined its characteristics in Xenopus oocytes. A. kurodai FaNaC (AkFaNaC) comprised with 653 amino acids, and the sequence predicts two putative membrane domains and a large extracellular domain as in other members of the ENaC/DEG family. In oocytes expressing AkFaNaC, FMRFamide evoked amiloride-sensitive Na+ current. Different from the known FaNaCs (Helix and Helisoma FaNaCs), AkFaNaC was blocked by external Ca2+ but not by Mg2+. Also, desensitization of the current was enhanced by Mg2+ but not by Ca2+. The FMRFamide-gated current was depressed in both low and high pH. These results indicate that AkFaNaC is an FaNaC of Aplysia, and that the channel has Aplysia specific functional domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–b
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams CM, Snyder PM, WelshMJ (1999) Paradoxical stimulation of a DEG/ENaC channel by amiloride. J Biol Chem 274:15500–15504

    Article  PubMed  Google Scholar 

  2. Belkin KJ, Abrams TW (1993) FMRFamide produces biphasic modulation of the LFS motor neurons in the neural circuit of the siphon withdrawal reflex of Aplysia by activating Na+ and K+ currents. J Neurosci 13:5139–5152

    PubMed  Google Scholar 

  3. Benos DJ, Stanton BA (1999) Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels. J Physiol (Lond) 520:631–644

    Article  Google Scholar 

  4. Coscoy S, de Weille JR, lingueglia E, Lazdunski M (1999) The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore. J Biol Chem 274:10129–10132

    Article  PubMed  Google Scholar 

  5. Coscoy S, Lingueglia E, Lazdunski M, Barbry P (1998) The Phe-Met-Arg-Phe-amide-activated sodium channel is a tetramer. J Biol Chem 273:8317–8322

    Article  PubMed  Google Scholar 

  6. Cottrell GA (1997) The first peptide-gated ion channel. J Exp Biol 200:2377–2386

    PubMed  Google Scholar 

  7. Cottrell GA, Davis NW, Green KA (1984) Multiple actions of a molluscan cardioexcitatory neuropeptide and related peptides on identified Helix neurones. J Physiol (Lond) 356:315–333

    Google Scholar 

  8. Cottrell GA, Green KA, Davies NW (1990) The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) can activate a ligand-gated ion channel in Helix neurones. Pflügers Arch 416:612–614

    Article  PubMed  Google Scholar 

  9. Cottrell GA, Jeziorski MC, Green KA (2001) Location of a ligand recognition site of FMRFamide-gated Na+ channel. FEBS Lett 489:71–74

    Article  PubMed  Google Scholar 

  10. Cropper EC, Brezina V, Vilim FS, Harish O, Price DA, Rosen S, Kupfermann I, Weiss KR (1994) FRF peptides in the arc neuromuscular system of Aplysia: Purification and physiological actions. J Neurophysiol 72:2181–2195

    Google Scholar 

  11. Ebberink RH, Price DA, Loenhout H, Doble KE, Riehm JP, Geraerts WP, Greenberg MJ (1987) The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8:515–522

    Article  PubMed  Google Scholar 

  12. Fujisawa Y, Ikeda T, Nomoto K, Yasuda-Kamatani Y, Kenny PTM, Muneoka Y (1992) The FMRFamide-related decapeptide of Mytilus contains a d-amino acid residue. Comp Biochem Physiol 102C:91–95

    Article  Google Scholar 

  13. Green KA, Cottrell GA (2002) Activity modes and modulation of the peptide-gated Na+ channel of Helix neurones. Pflügers Arch 443:813–821

    Article  PubMed  Google Scholar 

  14. Green KA, Falconer SWP, Cottrell GA (1994) The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) directly gates two ion channels in an identified Helix neurone. Pflügers Arch 428:232–240

    Article  PubMed  Google Scholar 

  15. Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  16. Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    Article  PubMed  Google Scholar 

  17. Ishikawa T, Jiang C, Stutts MJ, Marunaka Y, Rotin D (2003) Regulation of the epithelial Na+ channel by cytosolic ATP. J Biol Chem 278:38276–38286

    Article  PubMed  Google Scholar 

  18. Ismailov II, Kieber-Emmons T, Lin C, Berdiev BK, Shlyonsky VG, Patton HK, Fuller CM, Worrell R, Zuckerman JB, Sun W, Eaton DC, Benos DJ, Kleyman TR (1997) Identification of an amiloride binding domain within the α-subunit of the epithelial Na+ channel. J Biol Chem 272:21075–21083

    Article  PubMed  Google Scholar 

  19. Jeziorski MC, Green KA, Sommerville J, Cottrell GA (2000) Cloning and expression of a FMRFamide-gated Na+ channel from Helisoma trivolvis and comparison with the native neuronal channel. J Physiol (Lond) 526:13–25

    Article  Google Scholar 

  20. Kellenberger S, Hoffmann-Pochon N, Gautschi I, Schneeberger E, and Schild L (1999) On the molecular basis of ion permeation in the epithelial Na+ channel. J Gen Physiol 114:13–30

    Article  PubMed  Google Scholar 

  21. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels; A variety of functions for shared structure. Physiol Rev 82:735–767

    PubMed  Google Scholar 

  22. Lingueglia E, Champigny G, Lazdunski M, Barbry P (1995) Cloning of the amiloride sensitive FMRFamide peptide-gated sodium channel. Nature 378:730–733

    Article  PubMed  Google Scholar 

  23. McNicholas CM, Canessa CM (1997) Diversity of channels generated by different combinations of epithelial sodium channel subunits. J Gen Physiol 109:681–692

    Article  PubMed  Google Scholar 

  24. Palmer LG (1984) Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J Memb Biol 80:153–165

    Article  Google Scholar 

  25. Paukert M, Babini E, Pusch M, Gründer S (2004) Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: Implications for channel gating. J Gen Physiol 124:383–394

    Article  PubMed  Google Scholar 

  26. Perry SJ, Straub WA, Schofield MG, Burke JF, Benjamin PR (2001) Neuronal expressoin of an FMRFamide-gated Na+ channel and its modulation by acid pH. J Neurosci 21:5559–5567

    PubMed  Google Scholar 

  27. Pfaffinger PJ, Furukawa Y, Zhao B, Dugan D, Kandel ER (1991) Cloning and expression of an Aplysia K+ channel and comparison with native Aplysia K+ currents. J Neurosci 11:918–927

    PubMed  Google Scholar 

  28. Poet M, Tauc M, Lingueglia E, Cance P, Poujeol P, Lazdunski M, Counillon L (2001) Exploration of the pore structure of a peptide-gated Na+ channel. EMBO J 20:5595–5602

    Article  PubMed  Google Scholar 

  29. Price DA, Lesser W, Lee TD, Doble KE, Greenberg MJ (1990) Seven FMRFamide-related and two SCP-related cardioactive peptides from Helix. J Exp Biol 154:421–437

    PubMed  Google Scholar 

  30. Prosser CL (1973) Comparative animal physiology, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  31. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 416:612–614

    Google Scholar 

  32. Ruben P, Johnson JW, Thompson S (1986) Analysis of FMRF-amide effects on Aplysia bursting neurons. J Neurosci 6:252–259

    PubMed  Google Scholar 

  33. Schild L, Schneeberger E, Gautschi I, Firsov D (1997) Identification of amino acid residues in the α, β, γ subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 109:15–26

    Article  PubMed  Google Scholar 

  34. Segal A, Awayda MS, Eggermont J, Driessche WV, Weber WM (2002) Influence of voltage and extracellular Na+ on amiloride block and transport kinetics of rat epithelial Na+ channel expressed in Xenopus oocytes. Pflügers Arch 443:882–891

    Article  PubMed  Google Scholar 

  35. Sheng S, Li J, McNulty KA, Kieber-Emmons T, Kleyman TR (2001) Epithelial sodium channel pore region: structure and role in gating. J Biol Chem 276:1326–1334

    Article  PubMed  Google Scholar 

  36. Shimizu Y, Kubo T, Furukawa Y (2002) Cumulative inactivation and the pore domain in the Kv1 channels. Pflügers Arch 443:720–730

    Article  PubMed  Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  38. Waldmann R, Champigny G, Lazdunski M (1995) Functional degenerin-containing chimeras identify residues essential for amiloride-sensitive Na+ channel function. J Biol Chem 270:11735–11737

    Article  PubMed  Google Scholar 

  39. Weber WM (1999) Ion currents of Xenopus laevis oocytes: state of the art. Biochim Biophys Acta 1421:213–233

    PubMed  Google Scholar 

  40. Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708

    Article  PubMed  Google Scholar 

  41. Zhainazarov AB, Cottrell GA (1998) Single-channel currents of a peptide-gated sodium channel expressed in Xenopus oocytes. J Physiol (Lond) 513:19–31

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Snutch for providing pSD64TR, and Dr. Y. Fujisawa for sample of peptides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, Y., Miyawaki, Y. & Abe, G. Molecular cloning and functional characterization of the Aplysia FMRFamide-gated Na+ channel. Pflugers Arch - Eur J Physiol 451, 646–656 (2006). https://doi.org/10.1007/s00424-005-1498-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1498-z

Keywords

Navigation