Skip to main content
Log in

Modulation of the FMRFamide-gated Na+ channel by external Ca2+

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

FMRFamide-gated Na+ channel (FaNaC) is a member of the DEG/ENaC family. Amino acid sequence of the second transmembrane region (TM2) of FaNaC is quite similar to that of the acid-sensing ion channels (ASIC) of the same family. In the upper part of TM2, there are two aspartate residues (D552 and D556 in Aplysia FaNaC, AkFaNaC) which construct two negative rings in the external vestibule. In the present study, we examined the function of D552/D556 mutants of AkFaNaC in Xenopus oocytes with special interest in Ca2+ sensitivity of FaNaC. The FMRFamide-evoked current through AkFaNaC was depressed by submillimolar Ca2+ such that the current in Ca2+-free condition was 2–3-fold larger than that in the control solution which contained 1.8 mM CaCl 2. Both D552 and D556 were found to be indispensable for the sensitivity of FaNaC to submillimolar Ca2+. Unexpectedly, however, both acidic residues were not essential for the inhibition by millimolar Ca2+ concentrations. The Ca2+-sensitive gating of FaNaC was recapitulated by an allosteric model in which Ca2+-bound channels are more difficult to open. The desensitization of FaNaC was also inhibited by Ca2+, which was abolished in some D552/D556 mutants. Structural models of FaNaC made by homology modeling showed that the distance between oxygen atoms of D552 and D556 on the adjacent subunits is close enough to coordinate Ca2+ in the nonconducting desensitized channel but not in the open channel. The results suggest that Ca2+ coordination between oxygen atoms of D552 and D556 disturbs the opening transition as well as the desensitization of FaNaC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babini E, Paukert M, Geisler HS, Gründer S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 277(44):41597–41603

    Article  CAS  PubMed  Google Scholar 

  2. Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E (2014) X-ray structure of acid-sensing ion channel 1-snake toxin complex reveals open state of a Na+-selective channel. Cell 156(4):717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR review 19. Br J Pharmacol 173(18):2671–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cottrell GA, Green KA, Davies NW (1990) The neuropeptide Phe-Met-Arg-Phe-NH 2 (FMRFamide) can activate a ligand-gated ion channel in Helix neurones. Pflugers Arch 416(5):612–614

    Article  CAS  PubMed  Google Scholar 

  5. Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349(6310):588–593

    Article  CAS  PubMed  Google Scholar 

  6. Dürrnagel S, Kuhn A, Tsiairis CD, Williamson M, Kalbacher H, Grimmelikhuijzen CJ, Holstein TW, Gründer S (2010) Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J Biol Chem 285(16):11958–11965

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dürrnagel S, Falkenburger BH, Gründer S (2012) High Ca2+ permeability of a peptide-gated DEG/ENaC from Hydra. J Gen Physiol 140(4):391–402

    Article  PubMed  PubMed Central  Google Scholar 

  8. Furukawa Y, Miyawaki Y, Abe G (2006) Molecular cloning and functional characterization of the Aplysia FMRFamide-gated na + channel. Pflugers Arch 451(5):646–656

    Article  CAS  PubMed  Google Scholar 

  9. Golubovic A, Kuhn A, Williamson M, Kalbacher H, Holstein TW, Grimmelikhuijzen CJ, Gründer S (2007) A peptide-gated ion channel from the freshwater polyp Hydra. J Biol Chem 282(48):35098–35103

    Article  CAS  PubMed  Google Scholar 

  10. Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460(7255):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gründer S, Assmann M (2015) Peptide-gated ion channels and the simple nervous system of hydra. J Exp Biol 218(Pt 4):551–561

    Article  PubMed  Google Scholar 

  12. Hidalgo P, MacKinnon R (1995) Revealing the architecture of a K + channel pore through mutant cycles with a peptide inhibitor. Science 268(5208):307–310

    Article  CAS  PubMed  Google Scholar 

  13. Horovitz A (1996) Double-mutant cycles: a powerful tool for analyzing protein structure and function. Fold Des 1(6):R121–R126

    Article  CAS  PubMed  Google Scholar 

  14. Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    Article  CAS  PubMed  Google Scholar 

  15. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449(7160):316–323

    Article  CAS  PubMed  Google Scholar 

  16. Jeziorski MC, Green KA, Sommerville J, Cottrell GA (2000) Cloning and expression of a FMRFamide-gated Na+ channel from Helisoma trivolvis and comparison with the native neuronal channel. J Physiol (Lond.) 526 Pt 1:13–25

    Article  CAS  Google Scholar 

  17. Kellenberger S, Gautschi I, Schild L (1999) A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci USA 96(7):4170–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kellenberger S, Hoffmann-Pochon N, Gautschi I, Schneeberger E, Schild L (1999) On the molecular basis of ion permeation in the epithelial Na+ channel, vol 114

  19. Kodani Y, Furukawa Y (2010) Position 552 in a FMRFamide-gated Na+ channel affects the gating properties and the potency of FMRFamide. Zool Sci 27(5):440–448

    Article  CAS  PubMed  Google Scholar 

  20. Kodani Y, Furukawa Y (2014) Electrostatic charge at position 552 affects the activation and permeation of FMRFamide-gated Na+ channels. J Physiol Sci 64(2):141–150

    Article  CAS  PubMed  Google Scholar 

  21. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3):774–797

    Article  CAS  PubMed  Google Scholar 

  22. Lefevre CM, Diakov A, Haerteis S, Korbmacher C, Gründer S, Wiemuth D (2014) Pharmacological and electrophysiological characterization of the human bile acid-sensitive ion channel (hBASIC). Pflugers Arch 466 (2):253–263

    Article  CAS  PubMed  Google Scholar 

  23. Li T, Yang Y, Canessa CM (2011a) Asp 433 in the closing gate of ASIC1 determines stability of the open state without changing properties of the selectivity filter or Ca2+ block. J Gen Physiol 137(3):289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li T, Yang Y, Canessa CM (2011b) Outlines of the pore in open and closed conformations describe the gating mechanism of ASIC1. Nat Commun 2:399

    Article  PubMed  Google Scholar 

  25. Lingueglia E, Champigny G, Lazdunski M, Barbry P (1995) Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel. Nature 378(6558):730–733

    Article  CAS  PubMed  Google Scholar 

  26. Lingueglia E, Deval E, Lazdunski M (2006) FMRFAmide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides 27(5):1138–1152

    Article  CAS  PubMed  Google Scholar 

  27. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  28. Paukert M, Babini E, Pusch M (2004) Gründer S Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol 124:383–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paukert M, Chen X, Polleichtner G, Schindelin H, Gründer S (2008) Candidate amino acids involved in H + gating of acid-sensing ion channel 1a. J Biol Chem 283(1):572–581

    Article  CAS  PubMed  Google Scholar 

  30. Perry SJ, Straub VA, Schofield MG, Burke JF, Benjamin PR (2001) Neuronal expression of an FMRFamide-gated Na+ channel and its modulation by acid pH. J Neurosci 21(15):5559–5567

    CAS  PubMed  Google Scholar 

  31. (2001) R: a language and environmentfor statistical computing. r foundation for statistical computing. Vienna, Austria URL http://www.R-project.org/. ISBN 3-900051-07-0

  32. Sakai H, Lingueglia E, Champigny G, Mattei MG, Lazdunski M (1999) Cloning and functional expression of a novel degenerin-like Na+ channel gene in mammals. J Physiol (Lond) 519 Pt 2:323–333

    Article  CAS  Google Scholar 

  33. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  PubMed  Google Scholar 

  34. Wang X, Kirberger M, Qiu F, Chen G, Yang JJ (2009) Towards predicting Ca2+-binding sites with different coordination numbers in proteins with atomic resolution. Proteins 75(4):787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wiemuth D, Gründer S (2010) A single amino acid tunes Ca2+ inhibition of brain liver intestine Na+ channel (BLINaC). J Biol Chem 285(40):30404–30410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wiemuth D, Assmann M, Gründer S (2014) The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC. Channels (Austin) 8(1):29–34

    Article  CAS  Google Scholar 

  37. Zhainazarov AB, Cottrell GA (1998) Single-channel currents of a peptide-gated sodium channel expressed in Xenopus oocytes. J Physiol (Lond) 513(Pt 1):19–31

    Article  CAS  Google Scholar 

  38. Zhang P, Sigworth FJ, Canessa CM (2006) Gating of acid-sensitive ion channel-1: release of Ca2+ block vs. allosteric mechanism. J Gen Physiol 127(2):109–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP15K07149.

Author contributions

YF conceived research; YF designed experiments; AF and YK performed experiments; AF, YK, and YF analyzed data; YF performed the simulation and the homology modeling; YF wrote a manuscript; AF, YK, and YF approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Furukawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

This article is part of the Topical Collection on Ion channels, receptors and transporters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, A., Kodani, Y. & Furukawa, Y. Modulation of the FMRFamide-gated Na+ channel by external Ca2+ . Pflugers Arch - Eur J Physiol 469, 1335–1347 (2017). https://doi.org/10.1007/s00424-017-2021-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2021-z

Keywords

Navigation