Skip to main content
Log in

Ion channels and membrane rafts in apoptosis

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Ion channels have been demonstrated to be a central element in the induction and the execution of apoptosis. In particular, mitochondrial ion channels, including not only the permeability transition pore but also a mitochondrial, ATP-sensitive (mKATP) channel as well as a mitochondrial calcium-activated potassium channel are involved critically in apoptotic changes in mitochondria. Ion channels in the cell membrane that are altered by induction of apoptosis include potassium, chloride and calcium channels. The Kv1.3 potassium channel belongs to the best-characterized ion channels involved in apoptosis and a genetic model of cells deficient for Kv1.3 has indicated a critical role for Kv1.3, at least in some forms of apoptosis. The mechanisms regulating ion channels during apoptosis are, however, still poorly defined. Recent studies have suggested a function for distinct membrane domains, termed rafts, in the cell membrane for the regulation of ion channels during apoptosis. Small sphingolipid- and cholesterol-enriched membrane domains are modified by many apoptotic stimuli to form large ceramide-enriched membrane platforms. These platforms serve to cluster receptor molecules, to re-organize intracellular signalling molecules including ion channels, to bring ion channels into close contact with their regulators and/or to separate proteins from a specific ion channel. Finally, the lipid composition of the cell membrane might be involved directly in ion channel regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anes E, Kühnel MP, Bos E, Moniz-Pereira J, Habermann A, Griffiths G (2003) Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802

    Article  CAS  PubMed  Google Scholar 

  2. Antonsson B, Conti F, Ciavatta A, Motessuit S, Lewis S, Martinou, I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372

    CAS  PubMed  Google Scholar 

  3. Ashley RH (2003) Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins. Mol Membr Biol 20:1–11

    CAS  Google Scholar 

  4. Avdonin V, Kasuya J, Ciorba MA, Kaplan B, Hoshi T, Iverson L (1998) Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated potassium channels. Proc Natl Acad Sci USA 95:11703–11708

    Article  CAS  PubMed  Google Scholar 

  5. Bathori G, Parolini I, Tombola F, Szabò I, Messina A, Oliva M, DePinto V, Lisanti M, Sargiacomo M, Zoratti M (1999) Porin is present in the plasmamembrane where it is concentrated in caveolae and caveolae-related domains. J Biol Chem 274:29607–29612

    CAS  PubMed  Google Scholar 

  6. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E (2001) Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 98:13942–13947

    Article  CAS  PubMed  Google Scholar 

  7. Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers and permeability transition. Physiol Rev 79:1127–1155

    CAS  PubMed  Google Scholar 

  8. Bini L, Pacini S, Liberatori S, Valensin S, Pellegrini M, Raggiaschi R, Pallini V, Baldar CT (2003) Extensive temporally regulated reorganization of the lipid raft proteome following T-cell antigen receptor triggering. Biochem J 369:301–309

    Article  CAS  PubMed  Google Scholar 

  9. Bock J, Szabò I, Jekle A, Gulbins E (2002) Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem Biophys Res Commun 295:526–531

    Article  CAS  PubMed  Google Scholar 

  10. Bock J, Szabò I, Gamper N, Adams C, Gulbins E (2003) Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 305:890–897

    Article  CAS  PubMed  Google Scholar 

  11. Bortner CD, Gomez-Angelats M, Cidlowksi JA (2001) Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem 276:4304–4314

    Article  CAS  PubMed  Google Scholar 

  12. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    CAS  PubMed  Google Scholar 

  13. Bustin SA, Li SR, Doudi S (2001) Expression of the Ca2+-activated chloride channel genes CLCA1 and CLCA2 is downregulated in human colorectal cancer. DNA Cell Biol 20:331–338

    Article  CAS  PubMed  Google Scholar 

  14. Cahalan MD, Wulff H, Chandy KG (2001) Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol 21:235–252

    CAS  PubMed  Google Scholar 

  15. Cannon CL, Kowalski MP, Stopak KS, Pier GB (2003) Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 29:188–197

    Article  CAS  PubMed  Google Scholar 

  16. Cayabyab FS, Khanna R, Jones OT, Schlichter LC (2000) Suppression of the rat microglia Kv1.3 current by Src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci 12:1949–1960

    Article  CAS  PubMed  Google Scholar 

  17. Chung HS, Park SR, Choi EK, Park HJ, Griffin RJ, Song CW, Park H (2003) Role of sphingomyelin-MAPKs pathway in heat-induced apoptosis. Exp Mol Med 35:181–188

    CAS  PubMed  Google Scholar 

  18. Cremesti A, Paris F, Grassmé H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables fas to cap and kill. J Biol Chem 276:23954–23961

    Article  CAS  PubMed  Google Scholar 

  19. Dallaporta B, Hirsch T, Susin SA, Zamzami N, Larochette N, Brenner C, Marzo I, Kroemer G (1998) Potassium leakage during apoptotic degradation phase. J Immunol 160:5605–5615

    CAS  PubMed  Google Scholar 

  20. Debska G, May R, Kisinska A, Szewczyk A, Elger CE, Kunz WS (2001) Potassium channel openers depolarize hippocampal mitochondria. Brain Res 892:42–50

    Article  CAS  PubMed  Google Scholar 

  21. Elble RC, Pauli BU (2001) Tumor suppression by a proapoptotic calcium-activated chloride channel in mammary epithelium. J Biol Chem 276:40510–40517

    CAS  PubMed  Google Scholar 

  22. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassmé H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:441–445

    Article  PubMed  Google Scholar 

  23. Fanzo JC, Lynch MP, Phee H, Hyer M, Cremesti A, Grassmé H, Norris JS, Coggeshall KM, Rueda BR, Pernis AB, Kolesnick R, Gulbins E (2003) CD95 rapidly clusters in cells of diverse origins. Cancer Biol Ther 2:392–395

    CAS  PubMed  Google Scholar 

  24. Fernandez-Salas E, Suh KS, Speransky VV, Bowers WL, Levy JM, Adams T, Pathak KR, Edwards LE, Hayes DD, Cheng C, Steven AC, Weinberg WC, Yuspa SH (2002) mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol Cell Biol 22:3610–3620

    Article  CAS  Google Scholar 

  25. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Google Scholar 

  26. Garcia-Ruiz C, Colell A, Mari M, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2003) Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 111:197–208

    Article  CAS  PubMed  Google Scholar 

  27. Gottlieb RA, Dosanjh A (1996) Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci USA 93:3587–3591

    Article  CAS  PubMed  Google Scholar 

  28. Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91:605–615

    PubMed  Google Scholar 

  29. Grassmé H, Schwarz H, Gulbins E (2001) Surface ceramide mediates CD95 clustering. Biochem Biophys Res Commun 284:1016–1030

    Article  PubMed  Google Scholar 

  30. Grassmé H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    Article  PubMed  Google Scholar 

  31. Grassmé H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307

    PubMed  Google Scholar 

  32. Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against P. aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  33. Grassmé H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470

    Article  PubMed  Google Scholar 

  34. Grijalba MT, Vercesi AE, Schreier S (1999) Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possibly early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38:13279–13287

    Article  CAS  PubMed  Google Scholar 

  35. Gross GJ, Fryer RM (1999) Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 84:973–979

    CAS  PubMed  Google Scholar 

  36. Gruber AD, Pauli BU (1999) Tumorigenicity of human breast cancer is associated with loss of the Ca2+-acivated chloride channel CLCA2. Cancer Res 59:5488–5491

    CAS  PubMed  Google Scholar 

  37. Gulbins E, Szabò I, Baltzer K, Lang F (1997) Ceramide-induced inhibition of T lymphocyte voltage-gated potassium channel is mediated by tyrosine kinases. Proc Natl Acad Sci USA 94:7661–7666

    CAS  PubMed  Google Scholar 

  38. Hanada T, Lin L, Chandy GK, Oh SS, Christi AH (1997) Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and shaker-type Kv1.3 potassium channel in T lymphocytes. J Biol Chem 272:26899–26904

    Article  CAS  PubMed  Google Scholar 

  39. Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of N. gonorrhoeae. FEBS Lett 478:260–266

    Article  CAS  PubMed  Google Scholar 

  40. Holmes TC, Fadool DA, Levitan IB (1996) Tyrosine phosphorylation of the Kv1.3 potassium channel. J Neurosci 16:1581–1590

    CAS  PubMed  Google Scholar 

  41. Holmes TC, Fadool DA, Ren R, Levitan IB (1996) Association of Src tyrosine kinases with a human potassium channel mediated by SH3 domain. Science 274:2089–2091

    Article  CAS  PubMed  Google Scholar 

  42. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576

    CAS  PubMed  Google Scholar 

  43. Holopainen JM, Subramanian M, Kinnunen PK (1998) Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37:17562–17570

    Article  CAS  PubMed  Google Scholar 

  44. Inoue I, Hagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    CAS  PubMed  Google Scholar 

  45. Jan JT, Chatterjee S, Griffin DE (2000) Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74:6425–6432

    Article  CAS  PubMed  Google Scholar 

  46. Kondo T, Yokokura T, Nagata S (1997) Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proc Natl Acad Sci USA 94:11951–11956

    Article  CAS  PubMed  Google Scholar 

  47. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    CAS  PubMed  Google Scholar 

  48. Lauritzen I, DeWeille JR, Lazdunski M (1997) The potassium channel opener (−)-cromakalim prevents glutamate-induced cell death in hippocampal neurons. J Neurochem 69:1570–1579

    CAS  PubMed  Google Scholar 

  49. Lepple-Wienhues A, Szabò I, Laun T, Kaba KN, Gulbins E, Lang F (1998) The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J Cell Biol 141:281–286

    CAS  PubMed  Google Scholar 

  50. Lepple-Wienhues A, Belka C, Laun T, Jekle A, Walter B, Wieland U, Welz M, Heil L, Kun J, Busch G, Weller M, Bamberg M, Gulbins E, Lang F (1999) Stimulation of CD95(Fas) blocks T lymphocyte calcium channels through spingomyelinase and sphingolipids. Proc Natl Acad Sci USA 96:13795–13800

    CAS  PubMed  Google Scholar 

  51. Liu Y, Sato T, Seharaseyon J, Szewczyk A, O’Bourke B, Marban E (1999) Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann NY Acad Sci 874:27–37

    CAS  PubMed  Google Scholar 

  52. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    PubMed  Google Scholar 

  53. Martens JR, Sakamoto N, Sullivan SA, Grobaski TD, Tamkun MM (2001) Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. J Biol Chem 276:8409–8414

    Article  CAS  PubMed  Google Scholar 

  54. Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchman EH, Kolesnick RN, Tilly JL (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6:1109–1114

    Article  CAS  PubMed  Google Scholar 

  55. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    Article  CAS  PubMed  Google Scholar 

  56. Nietsch HH, Roe MW, Fiekers JF, Moore AL, Lidofsky SD (2000) Activation of potassium and chloride channels by tumor necrosis factor alpha: role in liver. J Biol Chem 275:20556–20561

    Article  CAS  PubMed  Google Scholar 

  57. Nobel CSI, Arohnson JK, van den Dobbelsteen DJ, Slater AFG (2000) Inhibition of Na+/K+ ATP-ase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis. Apoptosis 5:153–163

    Article  CAS  PubMed  Google Scholar 

  58. Nurminen TA, Holopainen JM, Zhao H, Kinnunen PK (2002) Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc 124:12129–12134

    Article  CAS  PubMed  Google Scholar 

  59. Rasola A, Farahi Far D, Hofman P, Rossi B (1999) Lack of internucleosomal DNA fragmentation is related to Cl efflux impairment in hematopoietic cell apoptosis. FASEB J 13:1711–1723

    CAS  PubMed  Google Scholar 

  60. Remillard C, Yuan JXJ (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am Physiol 286:L49–L67

    CAS  Google Scholar 

  61. Rieux-Laucat F, LeDeist F, Hivroz C, Roberts IAG, Debatin KM, Fischer A, deVillartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349

    CAS  PubMed  Google Scholar 

  62. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  CAS  PubMed  Google Scholar 

  63. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    CAS  PubMed  Google Scholar 

  64. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K+ channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    Article  CAS  PubMed  Google Scholar 

  65. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    CAS  PubMed  Google Scholar 

  66. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    CAS  PubMed  Google Scholar 

  67. Small DL, Tauskela J, Xia ZL (2002) Role for chloride but not potassium channels in apoptosis in primary rat cortical cultures. Neurosci Lett 334:95–98

    Article  CAS  PubMed  Google Scholar 

  68. Souktani R, Berdeaux A, Ghaleh B, Giudicelli JF, Guize L, LeHeuzey JY, Henry P (2000) Induction of apoptosis using sphingolipids activates a chloride current in Xeopus laevis oocytes. Am J Physiol 279:C158–C165

    CAS  Google Scholar 

  69. Storey NM, Gomez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J Biol Chem 278:33319–33326

    Article  CAS  PubMed  Google Scholar 

  70. Szabò I, Zoratti M (1992) The mitochondrial megachannel is the permeability transition pore. J Bioenerget Biomembr 24:111–117

    Google Scholar 

  71. Szabò I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F (1996) Tyrosine-phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271:20465–20469

    CAS  PubMed  Google Scholar 

  72. Szabò I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine-kinase dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes upon Fas stimulation. Proc Natl Acad Sci USA 95:6169–6174

    CAS  PubMed  Google Scholar 

  73. Thinnes FP, Hellmann KP, Hellmann T, Merker R, Brockhaus-Pruchniewicz U, Schwarzer C, Walter G, Gotz H, Hilschmann N (2000) Studies on human porin XXII: cell membrane integrated human porin channels are involved in regulatory volume decrease (RVD) of HeLa cells. Mol Genet Metab 69:331–337

    Article  CAS  PubMed  Google Scholar 

  74. Wang L, Zhou P, Craig RW, Lu L (1999) Protection from cell death by mcl1 is mediated by membrane hyperpolarization induced by K+ channel activation. J Membr Biol 172:113–120

    Article  CAS  PubMed  Google Scholar 

  75. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  Google Scholar 

  76. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O’Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    Article  CAS  PubMed  Google Scholar 

  77. Yu SP (2003) Na+,K+-ATP-ase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death Biochem Pharmacol 66:1601–1609

    Google Scholar 

  78. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LMT, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    CAS  PubMed  Google Scholar 

  79. Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G, Schuchman EH, Mattson MP (2000) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci 15:85–97

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, Ma WY, Brown RE, Bode AM, Schmid HH, Dong Z (2001) Involvement of the acid sphingomyelinase pathway in UVA-induced apoptosis. J Biol Chem 276:11775–11782

    Article  CAS  PubMed  Google Scholar 

  81. Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies were supported by DFG Gu 335/10-2-3 to E.G. and a CNR Young Investigator Award to I.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gulbins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabò, I., Adams, C. & Gulbins, E. Ion channels and membrane rafts in apoptosis. Pflugers Arch - Eur J Physiol 448, 304–312 (2004). https://doi.org/10.1007/s00424-004-1259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1259-4

Keywords

Navigation