Skip to main content
Log in

Basolateral localization of flounder Na+-dicarboxylate cotransporter (fNaDC-3) in the kidney of Pleuronectes americanus

  • Ion Channels, Transporters
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The purpose of this study was to provide functional and immunocytochemical evidence for the location of the winter flounder (Pleuronectes americanus) sodium-dicarboxylate cotransporter-3 (fNaDC-3) in the basolateral membrane of proximal tubule cells. fNaDC-3 was expressed in Xenopus laevis oocytes. Lowering the external pH from 7.5 to 6.5 or 5.5 modestly decreased the uptake of [14C]succinate into fNaDC-3 expressing oocytes, but markedly increased the uptake of [14C]citrate. As measured by the two-electrode voltage-clamp technique, the citrate concentration eliciting half-maximal current, K 0.5, decreased from 490 µM at pH 7.5 to 32 µM at pH 6.0. The maximal inwards current, ΔI max, increased from −27 to −72 nA, when bath pH was changed from 7.5 to 6.0. These data suggest that fNaDC-3 translocates preferably divalent citrate. cis-Aconitate, a tricarboxylate that interacts exclusively with basolateral sodium-dicarboxylate cotransport in the rat kidney, was translocated by fNaDC-3 with a K 0.5 of 300 µM. Antibodies raised against an NaDC-3-specific peptide reacted with the basal cell side of flounder renal proximal tubule segment II (PII). No other structures were stained, indicating that fNaDC-3 is located exclusively in the basolateral membrane of PII cells. We assume that fNaDC-3 provides PII cells with Krebs cycle intermediates as fuels and with α-ketoglutarate to drive organic anion secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2.
Fig. 3A, B.
Fig. 4A, B.
Fig. 5A–D.

Similar content being viewed by others

References

  1. Bai L, Pajor AM (1997) Expression cloning of NaDC-2, an intestinal Na+- or Li+-dependent dicarboxylate transporter. Am J Physiol 273:G267–G274

    CAS  PubMed  Google Scholar 

  2. Burckhardt G (1984) Sodium-dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflugers Arch 401:254–261

    CAS  PubMed  Google Scholar 

  3. Burckhardt G, Bahn A, Wolff NA (2001) Molecular physiology of renal p-aminohippurate secretion. News Physiol Sci 16:114–118

    CAS  PubMed  Google Scholar 

  4. Burckhardt BC, Steffgen J, Langheit D, Müller GA, Burckhardt G (2000) Potential-dependent steady state kinetics of a dicarboxylate transporter cloned from winter flounder kidney. Pflugers Arch 441:323–330

    Article  CAS  PubMed  Google Scholar 

  5. Burckhardt BC, Drinkuth B, Menzel C, Steffgen J, Wright SH, Burckhardt G (2002) The renal Na+-dependent dicarboxylate transporter, NaDC-3, translocates dimethyl- and disulfhydryl compounds and contributes to renal heavy metal detoxification. J Am Soc Nephrol 12:2628–2638

    Google Scholar 

  6. Chen XZ, Shayakul C, Berger UV, Tian W, Hediger MA (1998) Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981

    Article  CAS  PubMed  Google Scholar 

  7. Chen X, Tsukaguchi H, Chen XZ, Berger UV, Hediger MA (1999) Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. J Clin Invest 103:1159–1168

    CAS  PubMed  Google Scholar 

  8. Edwards RM, Stack E, Trizna W (1997) alpha-Ketoglutarate transport in rat renal brush-border and basolateral membrane vesicles. J Pharmacol Exp Ther 281:1059–1064

    CAS  PubMed  Google Scholar 

  9. Elger M, Werner A, Herter P, Kohl B, Kinne RK, Hentschel H (1998) Na-Pi cotransport sites in proximal tubule and collecting tubule of winter flounder (Pleuronectes americanus). Am J Physiol 274:F374–F383

    CAS  PubMed  Google Scholar 

  10. Eveloff J, Kinne R, Kinter WB (1979) p-Aminohippuric acid transport into brush border vesicles isolated from flounder kidney. Am J Physiol 237:F291–F298

    CAS  PubMed  Google Scholar 

  11. Kekuda R, Wang H, Huang W, Pajor AM, Leibach FH, Devoe LD, Prasad PD, Ganapathy V (1999) Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter. J Biol Chem 274:3422–3429

    Article  CAS  PubMed  Google Scholar 

  12. Miller DS, Pritchard JB (1991) Indirect coupling of organic anion secretion to sodium in teleost (Paralichthys lethostigma) renal tubules. Am J Physiol 261:R1470–R1477

    CAS  PubMed  Google Scholar 

  13. Pajor AM (1995) Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem 270:5779–5785

    CAS  PubMed  Google Scholar 

  14. Pajor AM (1996) Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Am J Physiol 270:F642–F648

    CAS  Google Scholar 

  15. Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682

    Article  CAS  PubMed  Google Scholar 

  16. Pajor AM (2000) Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol 175:1–8

    Article  CAS  PubMed  Google Scholar 

  17. Pajor AM, Sun N (1996) Characterization of the rabbit renal Na+-dicarboxylate cotransporter using antifusion protein antibodies. Am J Physiol 271:C1808–C1816

    CAS  PubMed  Google Scholar 

  18. Pajor AM, Sun NN (2000) Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Am J Physiol 279:F482–F490

    CAS  PubMed  Google Scholar 

  19. Pajor AM, Gangula R, Yao X (2001) Cloning and functional characterization of a high-affinity Na+/dicarboxylate cotransporter from mouse brain. Am J Physiol 280:C1215–C1223

    CAS  PubMed  Google Scholar 

  20. Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarashi T, Endou H (1998) Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Am J Physiol 275:F298–F305

    CAS  PubMed  Google Scholar 

  21. Sheridan E, Rumrich G, Ullrich KJ (1983) Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney. Pflugers Arch 399:18–28

    CAS  PubMed  Google Scholar 

  22. Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Physiol 244:F223–F234

    CAS  PubMed  Google Scholar 

  23. Steffgen J, Burckhardt BC, Langenberg C, Kühne L, Müller GA, Burckhardt G, Wolff NA (1999) Expression cloning and characterization of a novel sodium-dicarboxylate cotransporter from winter flounder kidney. J Biol Chem 274:20191–20196

    Article  CAS  PubMed  Google Scholar 

  24. Sweet DH, Chan LMS, Walden R, Yang XP, Miller DS, Pritchard JB (2003) Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am J Physiol 284:F763–F769

    CAS  Google Scholar 

  25. Ullrich KJ, Fasold H, Rumrich G, Klöss S (1984) Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflugers Arch 400:241–249

    CAS  PubMed  Google Scholar 

  26. Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy V (2000) Structure, function and genomic organisation of human Na+-dependent high affinity dicarboxylate transporter. Am J Physiol 278:C1019–C1030

    CAS  PubMed  Google Scholar 

  27. Wolff NA, Werner A, Burkhardt S, Burckhardt G (1997) Expression cloning and characterization of a renal organic anion transporter from winter flounder. FEBS Lett 417:287–291

    Article  CAS  PubMed  Google Scholar 

  28. Wright SH, Wunz TM (1987) Succinate and citrate transport in renal basolateral and brush-border membranes. Am J Physiol 253:F432–F439

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by DFG Bu 998/2-1 to B.C.B. and by DFG Ste 435/2-4 to J.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Steffgen.

Additional information

*H. Hentschel and B.C. Burckhardt contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel*, H., Burckhardt*, B.C., Schölermann, B. et al. Basolateral localization of flounder Na+-dicarboxylate cotransporter (fNaDC-3) in the kidney of Pleuronectes americanus . Pflugers Arch - Eur J Physiol 446, 578–584 (2003). https://doi.org/10.1007/s00424-003-1081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1081-4

Keywords

Navigation