Skip to main content

Advertisement

Log in

Bimodality of cardiac vagal afferent C-fibres in the rat

  • Cardiovascular System
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Vagal afferent C-fibres from the heart constitute an important input to the neurogenic cardiovascular regulation. These fibres respond to altered cardiac filling pressures and to chemical stimuli. In rats, we tested whether cardiac vagal afferent C-fibres react exclusively to one stimulus (chemical or mechanical) or whether the fibres are bimodal, i.e. responsive to either kind of stimulus. As a mechanical stimulus, an indwelling balloon was inflated in the aorta to increase left ventricular end-diastolic pressure. The serotonin 5HT3 receptor agonist phenylbiguanide was injected into the pericardial sac as a chemical stimulus. An increase of fibre activity by more than two standard deviations compared with control was considered a response to a stimulus. Most fibres (42 out of 57) responded to both stimuli and were categorized as bimodal, 9 fibres were solely mechanosensitive and 6 were solely chemosensitive. Hence, the majority of cardiac vagal C-fibres are likely to be bimodal, responding to both cardiac filling pressure and serotonin 5HT3 receptor stimulation. Our results emphasize the potential role of endogenous mediators in the afferent limb of cardiac reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4A, B.
Fig. 5.
Fig. 6.
Fig. 7. a
Fig. 8.

Similar content being viewed by others

References

  1. Andresen MC, Yang M (1989) Interaction among unitary spike trains: implications for whole nerve measurements. Am J Physiol 256:R997–R1004

    PubMed  Google Scholar 

  2. Baker DG, Coleridge HM, Coleridge JCG (1979) Vagal afferent C fibers from the ventricle. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, pp 117–137

  3. DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197

    CAS  PubMed  Google Scholar 

  4. DiBona GF, Sawin LL (1995) Increased renal nerve activity in cardiac failure: arterial vs. baroreflex impairment. Am J Physiol 268:R112–R116

    PubMed  Google Scholar 

  5. DiBona GF, Jones SY, Sawin LL (1998) Angiotensin receptor antagonist improves cardiac reflex control of renal sodium handling in heart failure. Am J Physiol 274:H636–H641

    PubMed  Google Scholar 

  6. Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435–1441

    PubMed  Google Scholar 

  7. Golino P, Piscione F, Benedict CR, Anderson HV, Cappelli-Bigazzi M, Indolfi C, Condorelli M, Chiariello M, Willerson JT (1994) Local effect of serotonin released during coronary angioplasty. N Engl J Med 330:523–528

    Article  PubMed  Google Scholar 

  8. Hainsworth R (1995) Reflexes from the heart. Physiol Rev 71:617–658

    Google Scholar 

  9. Hines T, Mifflin SW (1995) Gestational effects on volume-sensitive cardiopulmonary receptor reflexes in rat. Am J Physiol 268:R736–R743

    PubMed  Google Scholar 

  10. Hines T, Toney GM, Mifflin SW (1994) Responses of neurons in the nucleus tractus solitarius to stimulation of heart and lung receptors in the rat. Circ Res 74:1188–1196

    PubMed  Google Scholar 

  11. Ireland SJ, Tyers MB (1987) Pharmacological characterization of 5-hydroxytryptamine-induced depolarization of the rat isolated vagus nerve. Br J Pharmacol 90:229–238

    PubMed  Google Scholar 

  12. Kaufman MP, Baker DG, Coleridge HM, Coleridge JC (1980) Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res 46:476–484

    PubMed  Google Scholar 

  13. Leanos OL, Hong E, Amezcua JL (1995) Reflex circulatory collapse following intrapulmonary entrapment of activated platelets: mediation via 5-HT3 receptor stimulation. Br J Pharmacol 116:2048–2052

    PubMed  Google Scholar 

  14. Linz P, Veelken R (2002) Serotonin 5-HT3 receptors on mechanosensitive neurons with cardiac afferents. Am J Physiol 282:H1828–H1835

    CAS  Google Scholar 

  15. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    CAS  PubMed  Google Scholar 

  16. Patel KP, Zhang PL (1994) Reduced renal sympathoinhibition in response to acute volume expansion in diabetic rats. Am J Physiol 267:R372–R379

    PubMed  Google Scholar 

  17. Sleight P, Widdicombe J (1965) Action potentials in afferent fibres from pericardial mechanoreceptors in the dog. J Physiol (Lond) 181:259–269

    Google Scholar 

  18. Sleight P, Widdicombe J (1965) Action potentials in fibres from receptors in the epicardium and myocardium of the dog's left ventricle. J Physiol (Lond) 181:235–258

    Google Scholar 

  19. Thoren P, Noresson E, Ricksten SE (1979) Cardiac receptors with non-medullated vagal afferents in the rat. Acta Physiol Scand 105:295–303

    PubMed  Google Scholar 

  20. Ustinova EE, Schultz HD (1994) Activation of cardiac vagal afferents by oxygen-derived free radicals in rats. Circ Res 74:895–903

    PubMed  Google Scholar 

  21. Ustinova EE, Schultz HD (1994) Activation of cardiac vagal afferents in ischemia and reperfusion. Prostaglandins versus oxygen-derived free radicals. Circ Res 74:904–911

    PubMed  Google Scholar 

  22. Van den Berg EK, Schmitz MJ, Benedict CR, Malloy CR, Willerson JT, Dehmer GJ (1989) Transcardiac serotonin concentration is increased in selected patients with limiting angina and complex coronary lesion morphology. Circulation 79:116–124

    PubMed  Google Scholar 

  23. Veelken R, Sawin LL, DiBona GF (1990) Epicardial serotonin receptors in circulatory control in conscious Sprague-Dawley rats. Am J Physiol 258:H466–H472

    PubMed  Google Scholar 

  24. Veelken R, Hilgers KF, Leonard M, Ruhe J, Scrogin K, Mann JFE, Luft FC (1993) A highly selective cardiorenal, serotonergic 5-HT3-mediated reflex in rats. Am J Physiol 264:H1871–H1877

    PubMed  Google Scholar 

  25. Veelken R, Hilgers KF, Ditting T, Fierlbeck W, Geiger H, Schmieder RE (1996) Subthreshold stimulation of a serotonin 5-HT3 reflex attenuates cardiovascular reflexes. Am J Physiol 271:R1500–R1506

    PubMed  Google Scholar 

  26. Veelken R, Leonard M, Stetter A, Hilgers KF, Mann JF, Reeh PW, Geiger H, Luft FC (1997) Pulmonary serotonin 5-HT3-sensitive afferent fibers modulate renal sympathetic nerve activity in rats. Am J Physiol 272:H979–H986

    PubMed  Google Scholar 

  27. Veelken R, Hilgers KF, Scrogin KE, Mann JF, Schmieder RE (1998) Endogenous angiotensin II and the reflex response to stimulation of cardiopulmonary serotonin 5HT3 receptors. Br J Pharmacol 125:1761–1767

    PubMed  Google Scholar 

  28. Verberne AJ, Guyenet PG (1992) Medullary pathway of the Bezold-Jarisch reflex in the rat. Am J Physiol 263:R1195–R1202

    PubMed  Google Scholar 

  29. Vikenes K, Farstad M, Nordrehaug JE (1999) Serotonin is associated with coronary artery disease and cardiac events. Circulation 100:483–489

    PubMed  Google Scholar 

  30. Zucker IH (1989) Left ventricular receptors: physiological controllers or pathological curiosities. Basic Res Cardiol 81:539–557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Veelken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veelken, R., Stetter, A., Dickel, T. et al. Bimodality of cardiac vagal afferent C-fibres in the rat. Pflugers Arch - Eur J Physiol 446, 516–522 (2003). https://doi.org/10.1007/s00424-003-1078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1078-z

Keywords

Navigation