Skip to main content

Brain-Heart Afferent-Efferent Traffic

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics
  • 389 Accesses

Abstract

The understanding of cardiac neuronal control has dramatically evolved in the last 50 years, both from an anatomical and a functional point of view. Cardiac neuronal control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This neuronal control system shows plasticity and memory capacity, allowing it to maintain an adequate cardiac function in response to normal physiological stressors such as standing and exercise. Yet, pathological events such as myocardial ischemia as well as any other type of cardiac stressor may overcome the homeostatic capability of the system, leading to excessive sympathoexcitation coupled with withdrawal of central parasympathetic drive. In turn, autonomic dysregulation is central to the evolution of heart failure and the development of life-threatening arrhythmias. As such, understanding the anatomical and physiological basis for cardiac neuronal control is crucial to implement effectively novel neuromodulation therapies to mitigate the progression of cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res. 1971; https://doi.org/10.1161/01.RES.29.5.437.

  2. Ross JP. Cardiovascular innervation. By G.A.G. Mitchell, O.B.E., T.D., M.B., Ch.M., D.Sc., Professor of Anatomy, University of Manchester. Foreword by Sir Geoffrey Jefferson, C.B.E., M.S., M.Ch., M.Sc., LL.D., F.R.C.P., F.R.C.S., F.A.C.S., F.R.S., Emeritus Prof. J Bone Joint Surg Br. 1956. https://doi.org/10.1302/0301-620x.38b3.787.

  3. Potts JT, Mitchell JH. Synchronization of somato-sympathetic outflows during exercise: role for a spinal rhythm generator. J Physiol. 1998;508(Pt 3):646. https://doi.org/10.1111/j.1469-7793.1998.646bp.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol. 2006;91:51–8. https://doi.org/10.1113/expphysiol.2005.032037.

    Article  CAS  PubMed  Google Scholar 

  5. Coote JH. Myths and realities of the cardiac vagus. J Physiol. 2013;591:4073–85. https://doi.org/10.1113/jphysiol.2013.257758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gray AL, Johnson TA, Lauenstein JM, Newton SS, Ardell JL, Massari VJ. Parasympathetic control of the heart. III. Neuropeptide Y-immunoreactive nerve terminals synapse on three populations of negative chronotropic vagal preganglionic neurons. J Appl Physiol. 2004;96:2279–87. https://doi.org/10.1152/japplphysiol.00621.2003.

    Article  CAS  PubMed  Google Scholar 

  7. Hopkins DA, Armour JA. Localization of sympathetic postganglionic and parasympathetic preganglionic neurons which innervate different regions of the dog heart. J Comp Neurol. 1984. https://doi.org/10.1002/cne.902290205.

  8. Foreman RDD, De Jongste MJL, Linderoth B. Integrative control of cardiac function by cervical and thoracic spinal neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 153–86.

    Google Scholar 

  9. Levy M, Martin P. Neural control of the heart. In: Berne RM, editor. Handbook of physiology: section 2: cardiovascular system, vol. 1. Bethesda: The American Physiological Society; 1979. p. 581–620.

    Google Scholar 

  10. Buckley U, Yamakawa K, Takamiya T, Armour JA, Shivkumar K, Ardell JL. Targeted stellate decentralization: implications for sympathetic control of ventricular electrophysiology. Heart Rhythm. 2016;13:282–8. https://doi.org/10.1016/j.hrthm.2015.08.022.

    Article  PubMed  Google Scholar 

  11. Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev. 1973. https://doi.org/10.1152/physrev.1973.53.1.159.

  12. Armour J, Kember G. Cardiac sensory neurons. In: Armour JA, Ardell JL, editors. Basic and clinical neurocardiology. New York: Oxford University Press; 2004. p. 79–117.

    Google Scholar 

  13. Harper RM, Kumar R, Macey PM, Ogren JA, Richardson HL. Functional neuroanatomy and sleep-disordered breathing: implications for autonomic regulation. Anat Rec. 2012;295:1385–95. https://doi.org/10.1002/ar.22514.

    Article  Google Scholar 

  14. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–32. https://doi.org/10.1212/wnl.42.9.1727.

    Article  CAS  PubMed  Google Scholar 

  15. Armour JA. Cardiac neuronal hierarchy in health and disease. Am J Phys Regul Integr Comp Phys. 2004;287:R262–71. https://doi.org/10.1152/ajpregu.00183.2004.

    Article  CAS  Google Scholar 

  16. Armour JA. Potential clinical relevance of the “little brain” on the mammalian heart. Exp Physiol. 2008;93:165–76. https://doi.org/10.1113/expphysiol.2007.041178.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy DA, O’Blenes S, Hanna BD, Armour JA. Capacity of intrinsic cardiac neurons to modify the acutely autotransplanted mammalian heart. J Heart Lung Transplant. 1994;13:847.

    CAS  PubMed  Google Scholar 

  18. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247:289–98. https://doi.org/10.1002/(SICI)1097-0185(199702)247:2<289::AID-AR15>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  19. Kember G, Armour JA, Zamir M. Neural control of heart rate: the role of neuronal networking. J Theor Biol. 2011;277:41–7. https://doi.org/10.1016/j.jtbi.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  20. Hoover DB, Shepherd AV, Southerland EM, Armour JA, Ardell JL. Neurochemical diversity of afferent neurons that transduce sensory signals from dog ventricular myocardium. Auton Neurosci Basic Clin. 2008;141:38–45. https://doi.org/10.1016/j.autneu.2008.04.010.

    Article  CAS  Google Scholar 

  21. Hopkins DA, Armour JA. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J Auton Nerv Syst. 1989;26:213–22. https://doi.org/10.1016/0165-1838(89)90170-7.

    Article  CAS  PubMed  Google Scholar 

  22. Armour JA, Huang MH, Pelleg A, Sylvén C. Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res. 1994;28:1218–25. https://doi.org/10.1093/cvr/28.8.1218.

    Article  CAS  PubMed  Google Scholar 

  23. Vance WH, Bowker RC. Spinal origins of cardiac afferents from the region of the left anterior descending artery. Brain Res. 1983;258:96–100. https://doi.org/10.1016/0006-8993(83)91230-1.

    Article  CAS  PubMed  Google Scholar 

  24. Armour JA. Synaptic transmission in the chronically decentralized middle cervical and stellate ganglia of the dog. Can J Physiol Pharmacol. 1983;258:96–100. https://doi.org/10.1139/y83-171.

    Article  Google Scholar 

  25. Armour JA. Activity of in situ stellate ganglion neurons of dogs recorded extracellularly. Can J Physiol Pharmacol. 1986;64:101–11. https://doi.org/10.1139/y86-016.

    Article  CAS  PubMed  Google Scholar 

  26. Ardell JL, Butler CK, Smith FM, Hopkins DA, Armour JA. Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Physiol Heart Circ Physiol. 1991;260:H713–21. https://doi.org/10.1152/ajpheart.1991.260.3.h713.

    Article  CAS  Google Scholar 

  27. Beaumont E, Salavatian S, Southerland EM, Vinet A, Jacquemet V, Armour JA, et al. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function. J Physiol. 2013;591:4515–33. https://doi.org/10.1113/jphysiol.2013.259382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuan B-X, Ardell JL, Hopkins DA, Losier AM, Armour JA. Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec. 1994;239:75–87. https://doi.org/10.1002/ar.1092390109.

    Article  CAS  PubMed  Google Scholar 

  29. Armour JA. Physiological behavior of thoracic cardiovascular receptors. Am J Phys. 1973;225:177–85. https://doi.org/10.1152/ajplegacy.1973.225.1.177.

    Article  CAS  Google Scholar 

  30. Paintal AS. A study of ventricular pressure receptors and their role in the Bezold reflex. Q J Exp Physiol Cogn Med Sci. 1955;40:348–63. https://doi.org/10.1113/expphysiol.1955.sp001135.

    Article  CAS  PubMed  Google Scholar 

  31. Paintal AS. A study of right and left atrial receptors. J Physiol. 1953;120:596–610. https://doi.org/10.1113/jphysiol.1953.sp004920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paintal AS, Damodaran VN, Guz A. Mechanism of excitation of type J receptors. Acta Neurobiol Exp (Wars). 1973;33:15–9.

    CAS  Google Scholar 

  33. Malliani A, Lombardi F. Consideration of the fundamental mechanisms eliciting cardiac pain. Am Heart J. 1982;103:575–8. https://doi.org/10.1016/0002-8703(82)90352-0.

    Article  CAS  PubMed  Google Scholar 

  34. Malliani A, Lombardi F, Pagani M, Recordati G, Schwartz PJ. Spinal sympathetic reflexes in the cat and the pathogenesis of arterial hypertension. Clin Sci Mol Med Suppl. 1975;2:269–70. https://doi.org/10.1042/cs048259s.

    Article  Google Scholar 

  35. Peters SR, Kostreva DR, Armour JA, Zuperku EJ, Igler FO, Coon RL, et al. Cardiac, aortic, pericardial, and pulmonary vascular receptors in the dog. Cardiology. 1980;65:85–100. https://doi.org/10.1159/000170798.

    Article  CAS  PubMed  Google Scholar 

  36. Ursino M, Magosso E. Role of short-term cardiovascular regulation in heart period variability: a modeling study. Am J Physiol Heart Circ Physiol. 2003;284:H1479–93. https://doi.org/10.1152/ajpheart.00850.2002.

    Article  CAS  PubMed  Google Scholar 

  37. Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, et al. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol. 2016;594:3877–909. https://doi.org/10.1113/JP271869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimura K, Ieda M, Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 2012;110:325–36. https://doi.org/10.1161/CIRCRESAHA.111.257253.

    Article  CAS  PubMed  Google Scholar 

  39. Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013;9:176–93. https://doi.org/10.4161/org.24892.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ieda M, Kanazawa H, Ieda Y, Kimura K, Matsumura K, Tomita Y, et al. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation. 2006;114:2351–63. https://doi.org/10.1161/CIRCULATIONAHA.106.627588.

    Article  CAS  PubMed  Google Scholar 

  41. Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, et al. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell. 2004;118:243–5. https://doi.org/10.1016/j.cell.2004.06.021.

    Article  CAS  PubMed  Google Scholar 

  42. Huang MH, Horackova M, Negoescu RM, Wolf S, Armour JA. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Cardiovasc Res. 1996;32:503–15. https://doi.org/10.1016/0008-6363(96)00108-3.

    Article  CAS  PubMed  Google Scholar 

  43. Ardell JL, Armour JA. Neurocardiology: structure-based function. Compr Physiol. 2016;6:1635–53. https://doi.org/10.1002/cphy.c150046.

    Article  PubMed  Google Scholar 

  44. Foreman RD. Mechanisms of cardiac pain. Annu Rev Physiol. 1999;61:143–67. https://doi.org/10.1146/annurev.physiol.61.1.143.

    Article  CAS  PubMed  Google Scholar 

  45. Foreman RD, Blair RW, Holmes HR, Armour JA. Correlation of ventricular mechanosensory neurite activity with myocardial sensory field deformation. Am J Phys Regul Integr Comp Phys. 1999;276:R979–89. https://doi.org/10.1152/ajpregu.1999.276.4.r979.

    Article  CAS  Google Scholar 

  46. Ellison JP, Hibbs RG. An ultrastructural study of mammalian cardiac ganglia. J Mol Cell Cardiol. 1976;8:89–101. https://doi.org/10.1016/0022-2828(76)90023-7.

    Article  CAS  PubMed  Google Scholar 

  47. Huang MH, Sylven C, Horackova M, Armour JA. Ventricular sensory neurons in canine dorsal root ganglia: effects of adenosine and substance P. Am J Phys Regul Integr Comp Phys. 1995;269:R318–24. https://doi.org/10.1152/ajpregu.1995.269.2.r318.

    Article  CAS  Google Scholar 

  48. Kember GC, Fenton GA, Armour JA, Kalyaniwalla N. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2001;63:041911. https://doi.org/10.1103/PhysRevE.63.041911.

    Article  CAS  Google Scholar 

  49. Falcón D, Galeano-Otero I, Calderón-Sánchez E, Del Toro R, Martín-Bórnez M, Rosado JA, et al. TRP channels: current perspectives in the adverse cardiac remodeling. Front Physiol. 2019; https://doi.org/10.3389/fphys.2019.00159.

  50. Armour JA. Neuronal activity recorded extracellularly in chronically decentralized in situ canine middle cervical ganglia. Can J Physiol Pharmacol. 1986;64:1038–46. https://doi.org/10.1139/y86-177.

    Article  CAS  PubMed  Google Scholar 

  51. Bosnjak Kampine ZJJP. Cardiac sympathetic afferent cell bodies are located in the peripheral nervous system of the cat. Circ Res. 1989;64:554–62. https://doi.org/10.1161/01.res.64.3.554.

    Article  PubMed  Google Scholar 

  52. Ardell JL, Cardinal R, Vermeulen M, Armour JA. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia. Am J Phys Regul Integr Comp Phys. 2009;297:R470–7. https://doi.org/10.1152/ajpregu.90821.2008.

    Article  CAS  Google Scholar 

  53. Dusi V, Ghidoni A, Ravera A, De Ferrari GM, Calvillo L. Chemokines and heart disease: a network connecting cardiovascular biology to immune and autonomic nervous systems. Mediat Inflamm. 2016;2016 https://doi.org/10.1155/2016/5902947.

  54. Levy MN. Neural control of cardiac function. Baillieres Clin Neurol. 1997;6:227–44.

    CAS  PubMed  Google Scholar 

  55. Loring JF, Erickson CA. Neural crest cell migratory pathways in the trunk of the chick embryo. Dev Biol. 1987;121:220–36. https://doi.org/10.1016/0012-1606(87)90154-0.

    Article  CAS  PubMed  Google Scholar 

  56. Creazzo TL, Godt RE, Leatherbury L, Conway SJ, Kirby ML. Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol. 1998;60:267–86. https://doi.org/10.1146/annurev.physiol.60.1.267.

    Article  CAS  PubMed  Google Scholar 

  57. Farrell M, Waldo K, Li YX, Kirby ML. A novel role for cardiac neural crest in heart development. Trends Cardiovasc Med. 1999;103:1499–507. https://doi.org/10.1016/S1050-1738(00)00023-2.

    Article  Google Scholar 

  58. Waldo K, Zdanowicz M, Burch J, Kumiski DH, Stadt HA, Godt RE, et al. A novel role for cardiac neural crest in heart development. J Clin Invest. 1999;9:214–20. https://doi.org/10.1172/JCI6501.

    Article  Google Scholar 

  59. Geis WP, Kaye MP, Randall WC. Major autonomic pathways to the atria and S-A and A-V nodes of the canine heart. Am J Phys. 1973;224:202–8. https://doi.org/10.1152/ajplegacy.1973.224.1.202.

    Article  CAS  Google Scholar 

  60. Randall WC, Rohse WG. The augmentor action of the sympathetic cardiac nerves. Circ Res. 1956;4:470–5. https://doi.org/10.1161/01.RES.4.4.470.

    Article  CAS  PubMed  Google Scholar 

  61. Chauhan RA, Coote J, Allen E, Pongpaopattanakul P, Brack KE, Ng GA. Functional selectivity of cardiac preganglionic sympathetic neurones in the rabbit heart. Int J Cardiol. 2018;264:70–8. https://doi.org/10.1016/j.ijcard.2018.03.119.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schwartz PJ, Stone HL. Effects of unilateral stellectomy upon cardiac performance during exercise in dogs. Circ Res. 1979;44:637–45. https://doi.org/10.1161/01.RES.44.5.637.

    Article  CAS  PubMed  Google Scholar 

  63. Rajendran PS, Challis RC, Fowlkes CC, Hanna P, Tompkins JD, Jordan MC, et al. Nat Commun. 2019; https://doi.org/10.1038/s41467-019-09770-1.

  64. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;18:416–28. https://doi.org/10.1161/01.RES.18.4.416.

    Article  CAS  PubMed  Google Scholar 

  65. Randall WC, Armour JA, Geis WP, Lippincott DB. Regional cardiac distribution of the sympathetic nerves. Fed Proc. 1972;31:1999–208.

    Google Scholar 

  66. Haws CW, Burgess MJ. Effects of bilateral and unilateral stellate stimulation on canine ventricular refractory periods at sites of overlapping innervation. Circ Res. 1978;42:195–8. https://doi.org/10.1161/01.RES.42.2.195.

    Article  CAS  PubMed  Google Scholar 

  67. Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters RJ, Durrer D, et al. Circulation. 1985;72:585–95. https://doi.org/10.1161/01.CIR.72.3.585.

    Article  CAS  PubMed  Google Scholar 

  68. Vaseghi M, Zhou W, Shi J, Ajijola OA, Hadaya J, Shivkumar K, et al. Sympathetic innervation of the anterior left ventricular wall by the right and left stellate ganglia. Heart Rhythm. 2012;9:1303–9. https://doi.org/10.1016/j.hrthm.2012.03.052.

    Article  PubMed  Google Scholar 

  69. Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA. Activity of in vivo canine cardiac plexus neurons. Am J Physiol Heart Circ Physiol. 1988;255:H789–800. https://doi.org/10.1152/ajpheart.1988.255.4.h789.

    Article  CAS  Google Scholar 

  70. Thompson GW, Collier K, Ardell JL, Kember G, Armour JA. Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus. J Physiol. 2000;528:561–71. https://doi.org/10.1111/j.1469-7793.2000.00561.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Waldmann M, Thompson GW, Kember GC, Ardell JL, Armour JA. Stochastic behavior of atrial and ventricular intrinsic cardiac neurons. J Appl Physiol. 2006;101:413–9. https://doi.org/10.1152/japplphysiol.01346.2005.

    Article  CAS  PubMed  Google Scholar 

  72. Hoover DB, Isaacs ER, Jacques F, Hoard JL, Pagé P, Armour JA. Localization of multiple neurotransmitters in surgically derived specimens of human atrial ganglia. Neuroscience. 2009;164:1170–9. https://doi.org/10.1016/j.neuroscience.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  73. Horackova M, Armour JA, Byczko Z. Distribution of intrinsic cardiac neurons in whole-mount guinea pig atria identified by multiple neurochemical coding. A confocal microscope study. Cell Tissue Res. 1999;297:409–21. https://doi.org/10.1007/s004410051368.

    Article  CAS  PubMed  Google Scholar 

  74. Armour JA, Collier K, Kember G, Ardell JL. Differential selectivity of cardiac neurons in separate intrathoracic autonomic ganglia. Am J Phys Regul Integr Comp Phys. 1998;274:R939–49. https://doi.org/10.1152/ajpregu.1998.274.4.r939.

    Article  CAS  Google Scholar 

  75. Murphy DA, Thompson GW, Ardell JL, McCraty R, Stevenson RS, Sangalang VE, et al. The heart reinnervates after transplantation. Ann Thorac Surg. 2000;69:1769–81. https://doi.org/10.1016/S0003-4975(00)01240-6.

    Article  CAS  PubMed  Google Scholar 

  76. Butler CK, Smith FM, Cardinal R, Murphy DA, Hopkins DA, Armour JA. Cardiac responses to electrical stimulation of discrete loci in canine atrial and ventricular ganglionated plexi. Am J Physiol Heart Circ Physiol. 1990;259:H1365–73. https://doi.org/10.1152/ajpheart.1990.259.5.h1365.

    Article  CAS  Google Scholar 

  77. Butler CK, Smith FM, Nicholson J, Armour JA. Cardiac effects induced by chemically activated neurons in canine intrathoracic ganglia. Am J Physiol Heart Circ Physiol. 1990;259:H1108–17. https://doi.org/10.1152/ajpheart.1990.259.4.h1108.

    Article  CAS  Google Scholar 

  78. Cardinal R, Pagé P, Vermeulen M, Ardell JL, Armour JA. Spatially divergent cardiac responses to nicotinic stimulation of ganglionated plexus neurons in the canine heart. Auton Neurosci Basic Clin. 2009;145:55–62. https://doi.org/10.1016/j.autneu.2008.11.007.

    Article  CAS  Google Scholar 

  79. Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, et al. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol. 2016;594:3853–75. https://doi.org/10.1113/JP271840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Holmgren S, Abrahamsson T, Almgren O. Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol. 1985;80:18–26. https://doi.org/10.1007/BF01906740.

    Article  CAS  PubMed  Google Scholar 

  81. Dahlström A, Mya-Tu M, Fuxe K, Zetterström BE. Observations on adrenergic innervation of dog heart. Am J Phys. 1965;209:689–92. https://doi.org/10.1152/ajplegacy.1965.209.4.689.

    Article  Google Scholar 

  82. Jacobowitz D, Cooper T, Barner HB. Histochemical and chemical studies of the localization of adrenergic and cholinergic nerves in normal and denervated cat hearts. Circ Res. 1967;20:289–98. https://doi.org/10.1161/01.RES.20.3.289.

    Article  CAS  PubMed  Google Scholar 

  83. Ito M, Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation. 1994;90:1459–68. https://doi.org/10.1161/01.CIR.90.3.1459.

    Article  CAS  PubMed  Google Scholar 

  84. Ieda M, Kimura K, Kanazawa H, Fukuda K. Regulation of cardiac nerves: a new paradigm in the management of sudden cardiac death? Curr Med Chem. 2008;15:1731–6. https://doi.org/10.2174/092986708784872339.

    Article  CAS  PubMed  Google Scholar 

  85. Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, et al. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med. 2007;13:604–12. https://doi.org/10.1038/nm1570.

    Article  CAS  PubMed  Google Scholar 

  86. Herring N. Autonomic control of the heart: going beyond the classical neurotransmitters. Exp Physiol. 2015;100:354–8. https://doi.org/10.1113/expphysiol.2014.080184.

    Article  CAS  PubMed  Google Scholar 

  87. Dusi V, De Ferrari GM, Schwartz PJ. There are 100 ways by which the sympathetic nervous system can trigger life-threatening arrhythmias. Eur Heart J. 2020. https://doi.org/10.1093/eurheartj/ehz950.

  88. Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976;1:239–48. https://doi.org/10.1016/0306-4522(76)90054-3.

    Article  CAS  PubMed  Google Scholar 

  89. Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, et al. The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: Implications for neural control of cardiac excitability. J Mol Cell Cardiol. 2012;52:667–76. https://doi.org/10.1016/j.yjmcc.2011.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Potter E. Presynaptic inhibition of cardiac vagal postganglionic nerves by neuropeptide Y. Neurosci Lett. 1987;83:101–6. https://doi.org/10.1016/0304-3940(87)90223-0.

    Article  CAS  PubMed  Google Scholar 

  91. Smith-White MA, Herzog H, Potter EK. Role of neuropeptide Y Y2 receptors in modulation of cardiac parasympathetic neurotransmission. Regul Pept. 2002;103:105–1. https://doi.org/10.1016/S0167-0115(01)00368-8.

    Article  CAS  PubMed  Google Scholar 

  92. Potter EK. Prolonged non-adrenergic inhibition of cardiac vagal action following sympathetic stimulation: neuromodulation by neuropeptide Y? Neurosci Lett. 1985;54:117–21. https://doi.org/10.1016/S0304-3940(85)80065-3.

    Article  CAS  PubMed  Google Scholar 

  93. Kalla M, Hao G, Tapoulal N, Tomek J, Liu K, Woodward L, et al. The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. Eur Heart J. 2019. https://doi.org/10.1093/eurheartj/ehz852.

  94. Edvinsson L, Copeland JR, Emson PC, McCulloch J, Uddman R. Nerve fibers containing neuropeptide Y in the cerebrovascular bed: immunocytochemistry, radioimmunoassay, and vasomotor effects. J Cereb Blood Flow Metab. 1987;7:45–57. https://doi.org/10.1038/jcbfm.1987.7.

    Article  CAS  PubMed  Google Scholar 

  95. Geis GS, Wurster RD. Cardiac responses during stimulation of the dorsal motor nucleus and nucleus ambiguus in the cat. Circ Res. 1980;46:606–11. https://doi.org/10.1161/01.RES.46.5.606.

    Article  CAS  PubMed  Google Scholar 

  96. Geis GS, Wurster RD. Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res. 1980;182:19–30. https://doi.org/10.1016/0006-8993(80)90827-6.

    Article  CAS  PubMed  Google Scholar 

  97. Hopkins DA, Armour JA. Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull. 1982; https://doi.org/10.1016/0361-9230(82)90073-9.

  98. Kalia M, Mesulam M-M. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol. 1980;8:359–65. https://doi.org/10.1002/cne.901930210.

    Article  Google Scholar 

  99. Kalia M, Mesulam M-M. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467–508. https://doi.org/10.1002/cne.901930211.

    Article  CAS  PubMed  Google Scholar 

  100. McAllen RM, Spyer KM. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J Physiol. 1976;258:187–204. https://doi.org/10.1113/jphysiol.1976.sp011414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hopkins DA, Armour JA. Brainstem cells of origin of physiologically identified cardiopulmonary nerves in the rhesus monkey (Macaca mulatta). J Auton Nerv Syst. 1998;68:21–32. https://doi.org/10.1016/S0165-1838(97)00112-4.

    Article  CAS  PubMed  Google Scholar 

  102. Dickerson LW, Rodak DJ, Fleming TJ, Gatti PJ, Massari VJ, McKenzie JC, et al. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility. J Auton Nerv Syst. 1998;70:129–41. https://doi.org/10.1016/S0165-1838(98)00048-4.

    Article  CAS  PubMed  Google Scholar 

  103. Gatti PJ, Johnson TA, Massari VJ. Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? J Auton Nerv Syst. 1996;57:123–7. https://doi.org/10.1016/0165-1838(95)00104-2.

    Article  CAS  PubMed  Google Scholar 

  104. Gray AL, Johnson TA, Ardell JL, Massari VJ. Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. J Appl Physiol. 2004;96:2273–8. https://doi.org/10.1152/japplphysiol.00616.2003.

    Article  PubMed  Google Scholar 

  105. Mcallen RM, Salo LM, Paton JFR, Pickering AE. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J Physiol. 2011;589:5801–18. https://doi.org/10.1113/jphysiol.2011.214320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yuan BX, Ardell JL, Hopkins DA, Armour JA. Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovasc Res. 1993;27:760–9. https://doi.org/10.1093/cvr/27.5.760.

    Article  CAS  PubMed  Google Scholar 

  107. Inoue H, Zipes DP. Changes in atrial and ventricular refractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous sinus cycle length. Circ Res. 1987;60:942–51. https://doi.org/10.1161/01.RES.60.6.942.

    Article  CAS  PubMed  Google Scholar 

  108. Ardell JL, Rajendran PS, Nier HA, KenKnight BH, Armour JA. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. Am J Physiol Heart Circ Physiol. 2015;309:H1740–52. https://doi.org/10.1152/ajpheart.00557.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reeves TJ, Hefner LL. The effect of vagal stimulation on ventricular contractility. Trans Assoc Am Phys. 1961;74:260–70.

    CAS  PubMed  Google Scholar 

  110. Armour JA, Randall WC. In vivo papillary muscle responses to cardiac nerve stimulation. Proc Soc Exp Biol Med. 1970;133:948–52. https://doi.org/10.3181/00379727-133-34601.

    Article  CAS  PubMed  Google Scholar 

  111. Brandys JC, Randall WC, Armour JA. Functional anatomy of the canine mediastinal cardiac nerves located at the base of the heart. Can J Physiol Pharmacol. 1986;64:152–62. https://doi.org/10.1139/y86-023.

    Article  CAS  PubMed  Google Scholar 

  112. Ardell JL, Randall WC. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol Heart Circ Physiol. 1986;251:H764–73. https://doi.org/10.1152/ajpheart.1986.251.4.h764.

    Article  CAS  Google Scholar 

  113. Furukawa Y, Hoyano Y, Chiba S. Parasympathetic inhibition of sympathetic effects on sinus rate in anesthetized dogs. Am J Physiol Heart Circ Physiol. 1996;71:H44–50. https://doi.org/10.1152/ajpheart.1996.271.1.h44.

    Article  Google Scholar 

  114. Arora RC, Waldmann M, Hopkins DA, Armour JA. Porcine intrinsic cardiac ganglia. Anat Rec A Discov Mol Cell Evol Biol. 2003;271:249–58. https://doi.org/10.1002/ar.a.10030.

    Article  CAS  PubMed  Google Scholar 

  115. Armour JA. Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm. 2010;7:994–6. https://doi.org/10.1016/j.hrthm.2010.02.014.

    Article  PubMed  Google Scholar 

  116. Scherlag BJ, Patterson E, Po SS. The neural basis of atrial fibrillation. J Electrocardiol. 2006;39:S180–3. https://doi.org/10.1016/j.jelectrocard.2006.05.021.

    Article  PubMed  Google Scholar 

  117. Leiria TLL, Glavinovic T, Armour JA, Cardinal R, de Lima GG, Kus T. Longterm effects of cardiac mediastinal nerve cryoablation on neural inducibility of atrial fibrillation in canines. Auton Neurosci Basic Clin. 2011;161:68–74. https://doi.org/10.1016/j.autneu.2010.12.006.

    Article  Google Scholar 

  118. Arora R, Ardell JL, Armour JA. Cardiac denervation and cardiac function. Curr Interv Cardiol Rep. 2000;2(3):188–195.

    Google Scholar 

  119. Salavatian S, Beaumont E, Longpré JP, Armour JA, Vinet A, Jacquemet V, et al. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol Heart Circ Physiol. 2016;311:H1311–20. https://doi.org/10.1152/ajpheart.00443.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cervero F, Connell LA. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol. 1984;230:88–98. https://doi.org/10.1002/cne.902300108.

    Article  CAS  PubMed  Google Scholar 

  121. Kuo DC, Oravitz JJ, DeGroat WC. Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res. 1984;321:111–8. https://doi.org/10.1016/0006-8993(84)90686-3.

    Article  CAS  PubMed  Google Scholar 

  122. Willis WD. The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Pain Headache. 1985;8:1–346. https://doi.org/10.1136/jnnp.48.7.728.

    Article  PubMed  Google Scholar 

  123. Ammons WS, Girardot MN, Foreman RD. Effects of intracardiac bradykinin on T2-T5 medial spinothalamic cells. Am J Phys. 1985;249:R147–52. https://doi.org/10.1152/ajpregu.1985.249.2.r147.

    Article  CAS  Google Scholar 

  124. Blair RW, Weber RN, Foreman RD. Characteristics of primate spinothalamic tract neurons receiving viscerosomatic convergent inputs in T3-T5 segments. J Neurophysiol. 1981;46:797–811. https://doi.org/10.1152/jn.1981.46.4.797.

    Article  CAS  PubMed  Google Scholar 

  125. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001. https://doi.org/10.1016/S0025-6196(12)62272-1.

    Article  CAS  PubMed  Google Scholar 

  126. Saper CB, Loewy AD, Swanson LW, Cowan WM. Direct hypothalamo-autonomic connections. Brain Res. 1976;117:305–12. https://doi.org/10.1016/0006-8993(76)90738-1.

    Article  CAS  PubMed  Google Scholar 

  127. Pyner S. The paraventricular nucleus and heart failure. Exp Physiol. 2014;99:332–9. https://doi.org/10.1113/expphysiol.2013.072678.

    Article  CAS  PubMed  Google Scholar 

  128. Saha S. Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin Exp Pharmacol Physiol. 2005;32:450–6. https://doi.org/10.1111/j.1440-1681.2005.04210.x.

    Article  CAS  PubMed  Google Scholar 

  129. Jansen ASP, Wessendorf MW, Loewy AD. Transneuronal labeling of CNS neuropeptide and monoamine neurons after pseudorabies virus injections into the stellate ganglion. Brain Res. 1995;683:1–24. https://doi.org/10.1016/0006-8993(95)00276-V.

    Article  CAS  PubMed  Google Scholar 

  130. Koganezawa T, Shimomura Y, Terui N. The role of the RVLM neurons in the viscero-sympathetic reflex: a mini review. Auton Neurosci Basic Clin. 2008. https://doi.org/10.1016/j.autneu.2008.03.007.

  131. Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74:323–64. https://doi.org/10.1152/physrev.1994.74.2.323.

    Article  CAS  PubMed  Google Scholar 

  132. Sakaki M, Yoo HJ, Nga L, Lee TH, Thayer JF, Mather M. Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage. 2016;139:44–52. https://doi.org/10.1016/j.neuroimage.2016.05.076.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61:201–16. https://doi.org/10.1016/S0165-0327(00)00338-4.

    Article  CAS  PubMed  Google Scholar 

  134. Geis GS, Kozelka JW, Wurster RD. Organization and reflex control of vagal cardiomotor neurons. J Auton Nerv Syst. 1981;3:437–50. https://doi.org/10.1016/0165-1838(81)90080-1.

    Article  CAS  PubMed  Google Scholar 

  135. Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. NeuroImage. 2009;44:213–22. https://doi.org/10.1016/j.neuroimage.2008.07.056.

    Article  PubMed  Google Scholar 

  136. Bandler R, Keay KA, Floyd N, Price J. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull. 2000;53:95–104. https://doi.org/10.1016/S0361-9230(00)00313-0.

    Article  CAS  PubMed  Google Scholar 

  137. Fukuda K, Kanazawa H, Aizawa Y, Ardell JL, Shivkumar K. Cardiac innervation and sudden cardiac death. Circ Res. 2015;116:2005–19. https://doi.org/10.1161/CIRCRESAHA.116.304679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arora RC, Armour JA. Adenosine A1 receptor activation reduces myocardial reperfusion effects on intrinsic cardiac nervous system. Am J Phys Regul Integr Comp Phys. 2003;284:R1314–21. https://doi.org/10.1152/ajpregu.00333.2002.

    Article  CAS  Google Scholar 

  139. Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM. A cardiocardiac sympathovagal reflex in the cat. Circ Res. 1973;32:215–20. https://doi.org/10.1161/01.RES.32.2.215.

    Article  CAS  PubMed  Google Scholar 

  140. Ajijola OA, Yagishita D, Reddy NK, Yamakawa K, Vaseghi M, Downs AM, et al. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: neuropeptide and morphologic changes. Heart Rhythm. 2015;12:1027–35. https://doi.org/10.1016/j.hrthm.2015.01.045.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gardner RT, Wang L, Lang BT, Cregg JM, Dunbar CL, Woodward WR, et al. Targeting protein tyrosine phosphatase σ after myocardial infarction restores cardiac sympathetic innervation and prevents arrhythmias. Nat Commun. 2015;6:6235. https://doi.org/10.1038/ncomms7235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hardwick JC, Baran CN, Southerland EM, Ardell JL. Remodeling of the guinea pig intrinsic cardiac plexus with chronic pressure overload. Am J Phys Regul Integr Comp Phys. 2009;297:R859–66. https://doi.org/10.1152/ajpregu.00245.2009.

    Article  CAS  Google Scholar 

  143. Hardwick JC, Ryan SE, Beaumont E, Ardell JL, Southerland EM. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction. Auton Neurosci Basic Clin. 2014;181:4–12. https://doi.org/10.1016/j.autneu.2013.10.008.

    Article  CAS  Google Scholar 

  144. Lu CJ, Hao G, Nikiforova N, Larsen HE, Liu K, Crabtree MJ, et al. CAPON modulates neuronal calcium handling and cardiac sympathetic neurotransmission during dysautonomia in hypertension. Hypertension. 2015;65:1288–97. https://doi.org/10.1161/HYPERTENSIONAHA.115.05290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vanhoutte PM, Verbeuren TJ. Inhibition by acetylcholine of the norepinephrine release evoked by potassium in canine saphenous veins. Circ Res. 1976;39:263–9. https://doi.org/10.1161/01.res.39.2.263.

    Article  CAS  Google Scholar 

  146. Levy MN, Blattberg B. Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res. 1976;38:81–4. https://doi.org/10.1161/01.res.38.2.81.

    Article  CAS  PubMed  Google Scholar 

  147. Calvillo L, Vanoli E, Andreoli E, Besana A, Omodeo E, Gnecchi M, et al. Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial Ischemia and reperfusion. J Cardiovasc Pharmacol. 2011;58:500–7. https://doi.org/10.1097/FJC.0b013e31822b7204.

    Article  CAS  PubMed  Google Scholar 

  148. Hanna P, Shivkumar K, Ardell JL. Calming the nervous heart: autonomic therapies in heart failure. Card Fail Rev. 2018;4:92–8. https://doi.org/10.15420/cfr.2018.20.2.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Malliani A, Schwartz PJ, Zanchetti A. A sympathetic reflex elicited by experimental coronary occlusion. Am J Phys. 1969;217:703–9. https://doi.org/10.1152/ajplegacy.1969.217.3.703.

    Article  CAS  Google Scholar 

  150. Taggart P, PMI S, Spear DW, Drake HF, Swanton RH, Manuel RW. Simultaneous endocardial and epicardial monophasic action potential recordings during brief periods of coronary artery ligation in the dog: Influence of adrenaline, beta blockade and alpha blockade. Cardiovasc Res. 1988;22:900–9. https://doi.org/10.1093/cvr/22.12.900.

    Article  CAS  PubMed  Google Scholar 

  151. Williams DO, Scherlag BJ, Hope RR, El-Sherif N, Lazzara R. The pathophysiology of malignant ventricular arrhythmias during acute myocardial ischemia. Circulation. 1974;50:1163–72. https://doi.org/10.1161/01.CIR.50.6.1163.

    Article  CAS  PubMed  Google Scholar 

  152. Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death: experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation. 1992;85:177–91.

    Google Scholar 

  153. Schwartz PJ, Foreman RD, Stone HL, Brown AM. Effect of dorsal root section on the arrhythmias associated with coronary occlusion. Am J Phys. 1976;231:923–8. https://doi.org/10.1152/ajplegacy.1976.231.3.923.

    Article  CAS  Google Scholar 

  154. Lujan HL, Krishnan S, di Carlo SE. Cardiac spinal deafferentation reduces the susceptibility to sustained ventricular tachycardia in conscious rats. Am J Phys Regul Integr Comp Phys. 2011;301:R775–82. https://doi.org/10.1152/ajpregu.00140.2011.

    Article  CAS  Google Scholar 

  155. Schwartz PJ, Stone HL. Left stellectomy in the prevention of ventricular fibrillation caused by acute myocardial ischemia in conscious dogs with anterior myocardial infarction. Circulation. 1980;62:1256–65. https://doi.org/10.1161/01.CIR.62.6.1256.

    Article  CAS  PubMed  Google Scholar 

  156. Lujan HL, Palani G, Zhang L, DiCarlo SE. Targeted ablation of cardiac sympathetic neurons reduces the susceptibility to ischemia-induced sustained ventricular tachycardia in conscious rats. Am J Physiol Heart Circ Physiol. 2010;298:H1330–9. https://doi.org/10.1152/ajpheart.00955.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhou M, Liu Y, He Y, Xie K, Quan D, Tang Y, et al. Selective chemical ablation of transient receptor potential vanilloid 1 expressing neurons in the left stellate ganglion protects against ischemia-induced ventricular arrhythmias in dogs. Biomed Pharmacother. 2019;120:109500. https://doi.org/10.1016/j.biopha.2019.109500.

    Article  CAS  PubMed  Google Scholar 

  158. Zhou M, Liu Y, Xiong L, Quan D, He Y, Tang Y, et al. Cardiac sympathetic afferent denervation protects against ventricular arrhythmias by modulating cardiac sympathetic nerve activity during acute myocardial infarction. Med Sci Monit. 2019;25:1984–93. https://doi.org/10.12659/MSM.914105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension. 2014;64:745–55. https://doi.org/10.1161/HYPERTENSIONAHA.114.03699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tjen-A-Looi SC, Fu LW, Longhurst JC. Xanthine oxidase, but not neutrophils, contributes to activation of cardiac sympathetic afferents during myocardial ischaemia in cats. J Physiol. 2002;543:327–36. https://doi.org/10.1113/jphysiol.2001.013482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. D’Elia E, Pascale A, Marchesi N, Ferrero P, Senni M, Govoni S, et al. Novel approaches to the post-myocardial infarction/heart failure neural remodeling. Heart Fail Rev. 2014;19:611–9. https://doi.org/10.1007/s10741-013-9415-6.

    Article  CAS  PubMed  Google Scholar 

  162. Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96. https://doi.org/10.1161/01.CIR.67.4.787.

    Article  CAS  PubMed  Google Scholar 

  163. Inoue H, Zipes DP. Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart. Circ Res. 1988;62:1111–20. https://doi.org/10.1161/01.RES.62.6.1111.

    Article  CAS  PubMed  Google Scholar 

  164. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87. https://doi.org/10.1161/01.CIR.75.4.877.

    Article  CAS  PubMed  Google Scholar 

  165. Rajendran PS, Nakamura K, Ajijola OA, Vaseghi M, Armour JA, Ardell JL, et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system. J Physiol. 2016;594(2):321–41. https://doi.org/10.1113/JP271165.

    Article  CAS  PubMed  Google Scholar 

  166. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409–16. https://doi.org/10.1016/S0008-6363(00)00308-4.

    Article  CAS  PubMed  Google Scholar 

  167. Voroshilovsky O, Qu Z, Lee MH, Ohara T, Fishbein GA, Huang HLA, et al. Mechanisms of ventricular fibrillation induction by 60-Hz alternating current in isolated swine right ventricle. Circulation. 2000;102:1569–74. https://doi.org/10.1161/01.CIR.102.13.1569.

    Article  CAS  PubMed  Google Scholar 

  168. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res. 2004;95:76–83. https://doi.org/10.1161/01.RES.0000133678.22968.e3.

    Article  CAS  PubMed  Google Scholar 

  169. Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, et al. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol. 2012;59:954–61. https://doi.org/10.1016/j.jacc.2011.11.030.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Ajijola OA, Yagishita D, Patel KJ, Vaseghi M, Zhou W, Yamakawa K, et al. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context. Am J Physiol Heart Circ Physiol. 2013;59:954–61. https://doi.org/10.1152/ajpheart.00434.2013.

    Article  CAS  Google Scholar 

  171. Zhang H, Yuan X, Jin PF, Hou JF, Wang W, Wei YJ, et al. Alteration of parasympathetic/sympathetic ratio in the infarcted myocardium after schwann cell transplantation modified electrophysiological function of heart: a novel antiarrhythmic therapy. Circulation. 2010. https://doi.org/10.1161/CIRCULATIONAHA.109.922740.

  172. Eitel I, Nowak M, Stehl C, Adams V, Fuernau G, Hildebrand L, et al. Endothelin-1 release in acute myocardial infarction as a predictor of long-term prognosis and no-reflow assessed by contrast-enhanced magnetic resonance imaging. Am Heart J. 2010; https://doi.org/10.1016/j.ahj.2010.02.019.

  173. Ieda M, Fukuda K, Hisaka Y, Kimura K, Kawaguchi H, Fujita J, et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest. 2004. https://doi.org/10.1172/JCI200419480.

  174. Rana OR, Saygili E, Meyer C, Gemein C, Krüttgen A, Andrzejewski MG, et al. Regulation of nerve growth factor in the heart: the role of the calcineurin-NFAT pathway. J Mol Cell Cardiol. 2009. https://doi.org/10.1016/j.yjmcc.2008.12.006.

  175. Hopkins DA, Macdonald SE, Murphy DA, Armour JA. Pathology of intrinsic cardiac neurons from ischemic human hearts. Anat Rec. 2000. https://doi.org/10.1002/1097-0185(20000801)259:4<424::AID-AR60>3.0.CO;2-J.

  176. Vaseghi M, Salavatian S, Rajendran PS, Yagishita D, Woodward WR, Hamon D, et al. Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI Insight. 2017. https://doi.org/10.1172/jci.insight.86715.

  177. Kent KM, Smith ER, Redwood DR, Epstein SE. Electrical stability of acutely ischemic myocardium. Influences of heart rate and vagal stimulation. Circulation. 1973. https://doi.org/10.1161/01.CIR.47.2.291.

  178. Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, et al. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation. 1974. https://doi.org/10.1161/01.CIR.49.5.943.

  179. Corr PB, Gillis RA. Role of the vagus nerves in the cardiovascular changes induced by coronary occlusion. Circulation. 1974. https://doi.org/10.1161/01.CIR.49.1.86.

  180. Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res. 1987. https://doi.org/10.1161/01.RES.61.3.429.

  181. Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation. 1984. https://doi.org/10.1161/01.CIR.69.6.1182.

  182. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS, Foreman RD, Schwartz PJ. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res. 1991;68:1471–81.

    Article  CAS  Google Scholar 

  183. Billman GE, Kukielka M. Effects of endurance exercise training on heart rate variability and susceptibility to sudden cardiac death: protection is not due to enhanced cardiac vagal regulation. J Appl Physiol. 2006. https://doi.org/10.1152/japplphysiol.01328.2005.

  184. Hiltunen JO, Laurikainen A, Airaksinen MS, Saarma M. GDNF family receptors in the embryonic and postnatal rat heart and reduced cholinergic innervation in mice hearts lacking ret or GFRα2. Dev Dyn. 2000. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1031>3.0.CO;2-P.

  185. Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi T, et al. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest. 2010. https://doi.org/10.1172/JCI39778.

  186. Schwartz PJ, De Ferrari GM. Sympathetic-parasympathetic interaction in health and disease: abnormalities and relevance in heart failure. Heart Fail Rev. 2011. https://doi.org/10.1007/s10741-010-9179-1.

  187. Gronda E, Vanoli E, Sacchi S, Grassi G, Ambrosio G, Napoli C. Risk of heart failure progression in patients with reduced ejection fraction: mechanisms and therapeutic options. Heart Fail Rev. 2019. https://doi.org/10.1007/s10741-019-09823-z.

  188. Zucker IH, Patel KP, Schultz HD. Neurohumoral stimulation. Heart Fail Clin. 2012. https://doi.org/10.1016/j.hfc.2011.08.007.

  189. Mill JG, Stefanon I, dos Santos L, Baldo MP. Remodeling in the ischemic heart: the stepwise progression for heart failure. Braz J Med Biol Res. 2011. https://doi.org/10.1590/S0100-879X2011007500096.

  190. Dusi V, Zhu C, Ajijola OA. Neuromodulation approaches for cardiac arrhythmias: recent advances. Curr Cardiol Rep. 2019;21:32. https://doi.org/10.1007/s11886-019-1120-1.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chidsey CA, Braunwald E, Morrow AG, Mason DT. Myocardial norepinephrine concentration in man. Effects of reserpie and of congestive heart failure. N Engl J Med. 1963. https://doi.org/10.1056/NEJM196309262691302.

  192. Chidsey CA, Kaiser GA, Sonnenblick EH, Spann JF, Braunwald E. Cardiac norepinephrine stores in experimental heart failure in the dog. J Clin Invest. 1964;43:2386–93. https://doi.org/10.1172/JCI105113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chidsey CA, Braunwald E, Morrow AG. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med. 1965. https://doi.org/10.1016/0002-9343(65)90211-1.

  194. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, et al. Cardiac sympathetic nerve function in congestive heart failure. Circulation. 1996. https://doi.org/10.1161/01.CIR.93.9.1667.

  195. Leimbach WN, Wallin BG, Victor RG, Aylward PE, Sundlöf G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986. https://doi.org/10.1161/01.CIR.73.5.913.

  196. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986. https://doi.org/10.1161/01.CIR.73.4.615.

  197. Liang C, Fan THM, Sullebarger JT, Sakamoto S. Decreased adrenergic neuronal uptake activity in experimental right heart failure. A chamber-specific contributor to beta-adrenoceptor downregulation. J Clin Invest. 1989. https://doi.org/10.1172/JCI114294.

  198. Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, et al. The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol. 2001. https://doi.org/10.1006/jmcc.2000.1319.

  199. Münch G, Rosport K, Bültmann A, Baumgartner C, Li Z, Laacke L, et al. Cardiac overexpression of the norepinephrine transporter uptake-1 results in marked improvement of heart failure. Circ Res. 2005. https://doi.org/10.1161/01.RES.0000186685.46829.E5.

  200. Pool PE, Covell JW, Levitt M, Gibb J, Braunwald E. Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure. Its role in the depletion of cardiac norepinephrine stores. Circ Res. 1967. https://doi.org/10.1161/01.RES.20.3.349.

  201. Himura Y, Felten SY, Kashiki M, Lewandowski TJ, Delehanty JM, Liang CS. Cardiac noradrenergic nerve terminal abnormalities in dogs with experimental congestive heart failure. Circulation. 1993. https://doi.org/10.1161/01.CIR.88.3.1299.

  202. Kimura K, Kanazawa H, Ieda M, Kawaguchi-Manabe H, Miyake Y, Yagi T, et al. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure. Auton Neurosci Basic Clin. 2010. https://doi.org/10.1016/j.autneu.2010.02.005.

  203. Qin F, Vulapalli RS, Stevens SY, Liang CS. Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. Am J Physiol Heart Circ Physiol. 2002. https://doi.org/10.1152/ajpheart.00319.2001.

  204. Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin. 2014. https://doi.org/10.1016/j.ccl.2013.09.010.

  205. Liu JL, Pliquett RU, Brewer E, Cornish KG, Shen YT, Zucker IH. Chronic endothelin-1 blockade reduces sympathetic nerve activity in rabbits with heart failure. Am J Phys Regul Integr Comp Phys. 2001. https://doi.org/10.1152/ajpregu.2001.280.6.r1906.

  206. Hassankhani A, Steinhelper ME, Soonpaa MH, Katz EB, Taylor DA, Andrade-Rozental A, et al. Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol. 1995. https://doi.org/10.1006/dbio.1995.1146.

  207. Kimura K, Ieda M, Kanazawa H, Yagi T, Tsunoda M, Ninomiya SI, et al. Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy. Circ Res. 2007. https://doi.org/10.1161/01.RES.0000269828.62250.ab.

  208. Kreusser MM, Buss SJ, Krebs J, Kinscherf R, Metz J, Katus HA, et al. Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol. 2008. https://doi.org/10.1016/j.yjmcc.2007.10.019.

  209. Parrish DC, Alston EN, Rohrer H, Nkadi P, Woodward WR, Schütz G, et al. Infarction-induced cytokines cause local depletion of tyrosine hydroxylase in cardiac sympathetic nerves: experimental physiology-research paper. Exp Physiol. 2010. https://doi.org/10.1113/expphysiol.2009.049965.

  210. Kaye DM, Vaddadi G, Gruskin SL, Du XJ, Esler MD. Reduced myocardial nerve growth factor expression in human and experimental heart failure. Circ Res. 2000;86:E80–4. https://doi.org/10.1161/01.res.86.7.e80.

    Article  CAS  PubMed  Google Scholar 

  211. Dusi V, De Ferrari GM, Pugliese L, Schwartz PJ. Cardiac sympathetic denervation in channelopathies. Front Cardiovasc Med. 2019. https://doi.org/10.3389/fcvm.2019.00027.

  212. Vaseghi M, Barwad P, Malavassi Corrales FJ, Tandri H, Mathuria N, Shah R, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017;69:3070–80. https://doi.org/10.1016/j.jacc.2017.04.035.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Dusi V, Sorg JM, Gornbein J, Gima J, Yanagawa J, Lee JM, et al. Prognostic impact of atrial rhythm and dimension in patients with structural heart disease undergoing cardiac sympathetic denervation for ventricular arrhythmias. Heart Rhythm. 2020; [Online ahead of print]. https://doi.org/10.1016/j.hrthm.2019.12.007.

  214. Gronda E, Seravalle G, Brambilla G, Costantino G, Casini A, Alsheraei A, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure: a proof-of-concept study. Eur J Heart Fail. 2014;16:977–83. https://doi.org/10.1002/ejhf.138.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gronda E, Francis D, Zannad F, Hamm C, Brugada J, Vanoli E. Baroreflex activation therapy: a new approach to the management of advanced heart failure with reduced ejection fraction. J Cardiovasc Med. 2017;18:641–9. https://doi.org/10.2459/JCM.0000000000000544.

    Article  Google Scholar 

  216. Stavrakis S, Humphrey MB, Scherlag BJ, Hu Y, Jackman WM, Nakagawa H, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;10:867–75. https://doi.org/10.1016/j.jacc.2014.12.026.

    Article  Google Scholar 

  217. Stavrakis S, Stoner JA, Humphrey MB, Morris L, Filiberti A, Reynolds JC, et al. TREAT AF (Transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation): a randomized clinical trial. JACC Clin Electrophysiol. 2020;6:282–91. https://doi.org/10.1016/j.jacep.2019.11.008.

    Article  PubMed  Google Scholar 

  218. Konstam MA, Udelson JE, Butler J, Klein HU, Parker JD, Teerlink JR, et al. Impact of autonomic regulation therapy in patients with heart failure: ANTHEM-HFrEF pivotal study design. Circ Heart Fail. 2019;12(11):e005879. https://doi.org/10.1161/CIRCHEARTFAILURE.119.005879.

    Article  CAS  PubMed  Google Scholar 

  219. De Ferrari GM, Dusi V. Vagal stimulation in the treatment of heart failure. G Ital Cardiol. 2015;16:157–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dusi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dusi, V., Ardell, J.L. (2020). Brain-Heart Afferent-Efferent Traffic. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics