Skip to main content
Log in

Essential cysteine residues of the type IIa Na+/Pi cotransporter

  • Epithelial Transport
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The rat renal Na+/Pi cotransporter (NaPi-IIa) contains 12 native cysteines. When individually replaced by a serine, none appears essential for proper expression and function. Nevertheless, the formation of one essential cysteine bridge (C5/C6), together with a postulated second bridge, is necessary. To determine the minimum cysteine residues required for functional NaPi-IIa, with the goal of generating a Cys-less backbone for structure–function studies, mutants were constructed in which multiple endogenous cysteines were replaced by serines in different combinations. In Xenopus oocytes, most mutants were functional, except those where cysteine pairs C4/C9, C4/C12 or C9/C12 were simultaneously deleted. This suggested that one of these pairs could form the second cysteine bridge essential for expression and/or protein function. Up to eight cysteines could therefore be removed to give a functional Cys-reduced NaPi-IIa with activity and kinetics comparable to the wild-type (WT). This construct, like all intermediate mutants and the WT, was insensitive to cysteine-modifying methanethiosulfonate (MTS) reagents. Moreover, by introducing a novel cysteine into the Cys-reduced NaPi-IIa at a site functionally important in the WT (Ser-460), the loss of transport function reported for mutant S460C, after exposure to MTS reagents, was recapitulated. This confirmed that the MTS reagent site of action was Cys-460 and that modification of native cysteines does not contribute to S460C behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4A, B.

Similar content being viewed by others

References

  1. Busch A, Waldegger S, Herzer T, Biber J, Markovich D, Hayes G, Murer H, Lang F (1994) Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes. Proc Natl Acad Sci USA 91:8205–8208

    CAS  PubMed  Google Scholar 

  2. Busch AE, Wagner CA, Schuster A, Waldegger S, Biber J, Murer H, Lang F (1995) Properties of electrogenic Pi transport by a human renal brush border Na+/Pi transporter. J Am Soc Nephrol 6:1547–1551

    CAS  PubMed  Google Scholar 

  3. Chen JG, Liu-Chen S, Rudnick G (1997) External cysteine residues in the serotonin transporter. Biochemistry 36:1479–1486

    Article  CAS  PubMed  Google Scholar 

  4. Custer M, Lotscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266: F767–F774

    CAS  PubMed  Google Scholar 

  5. Forster I, Hernando N, Biber J, Murer H (1998) The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2). J Gen Physiol 112:1–18

    Article  CAS  Google Scholar 

  6. Forster I, Biber J, Murer H (2000) Proton-sensitive transitions of the renal rat type II Na+-coupled phosphate cotransporter kinetics. Biophys J 79:215–230

    CAS  PubMed  Google Scholar 

  7. Forster I, Kohler K, Biber J, Murer H (2002) Forging the link between structure and function of electrogenic transporters: the renal type IIa Na+/Pi cotransporter as a case study. Prog Biophys Mol Biol 80:69–108

    Article  CAS  PubMed  Google Scholar 

  8. Frillingos S, Sahin-Toth M, Wu J, Kaback HR (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 12:1281–1299

    CAS  PubMed  Google Scholar 

  9. Hayes G, Busch A, Lotscher M, Waldegger S, Lang F, Verrey F, Biber J, Murer H (1994) Role of N-linked glycosylation in rat renal Na/Pi-cotransport. J Biol Chem 269:24143–24149

    CAS  PubMed  Google Scholar 

  10. Kaback HR, Sahin-Toth M, Weinglass AB (2001) The kamikaze approach to membrane transport. Nature Rev Mol Cell Biol 2:610–620

    Article  CAS  Google Scholar 

  11. Karlin A, Akabas MH (1998) Substituted-cysteine accessibility method. Methods Enzymol 293:123–145

    CAS  PubMed  Google Scholar 

  12. Kohler K, Forster IC, Lambert G, Biber J, Murer H (2000) The functional unit of the renal type IIa Na+/Pi cotransporter is a monomer. J Biol Chem 275:26113–26120

    Article  CAS  PubMed  Google Scholar 

  13. Kohler K, Forster IC, Stange G, Biber J, Murer H (2002) Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol 282: F687–F696

    CAS  Google Scholar 

  14. Kohler K, Forster IC, Stange G, Biber J, Murer H (2002) Transport function of the renal type IIa Na+/Pi cotransporter is codetermined by residues in two opposing linker regions. J Gen Physiol 120:693–705

    Article  PubMed  Google Scholar 

  15. Kuo PH, Ketchum CJ, Nakamoto RK (1998) Stability and functionality of cysteine-less F(0)F1 ATP synthase from Escherichia coli. FEBS Lett 426:217–220

    Article  CAS  PubMed  Google Scholar 

  16. Lambert G, Traebert M, Hernando N, Biber J, Murer H (1999) Studies on the topology of the renal type II NaPi-cotransporter. Pflugers Arch 437:972–978

    Article  CAS  PubMed  Google Scholar 

  17. Lambert G, Forster IC, Stange G, Biber J, Murer H (1999) Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na+/Pi cotransporter protein. J Gen Physiol 114:637–652

    Article  CAS  PubMed  Google Scholar 

  18. Lambert G, Forster IC, Biber J, Murer H (2000) Cysteine residues and the structure of the rat renal proximal tubular type II sodium phosphate cotransporter (rat NaPi IIa). J Membr Biol 176:133–141

    Article  CAS  PubMed  Google Scholar 

  19. Lambert G, Forster IC, Stange G, Kohler K, Biber J, Murer H (2001) Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na+/Pi cotransporter. J Gen Physiol 117:533–546

    Article  CAS  PubMed  Google Scholar 

  20. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci USA 90:5979–5983

    CAS  PubMed  Google Scholar 

  21. Murer H, Biber J (1996) Molecular mechanisms of renal apical Na/phosphate cotransport. Annu Rev Physiol 58:607–618

    Article  CAS  PubMed  Google Scholar 

  22. Murer H, Biber J (1997) A molecular view of proximal tubular inorganic phosphate (Pi) reabsorption and of its regulation. Pflugers Arch 433:379–389

    CAS  PubMed  Google Scholar 

  23. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  24. Pajor AM, Krajewski SJ, Sun N, Gangula R (1999) Cysteine residues in the Na+/dicarboxylate co-transporter, NaDC-1. Biochem J 344:205–209

    Article  CAS  Google Scholar 

  25. Ren X, Kasir J, Rahamimoff H (2001) The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents. J Biol Chem 276:9572–9579

    Article  CAS  PubMed  Google Scholar 

  26. Sambrook J, Fritsch EF, Maniatis AM (1989) Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  27. Santacruz-Toloza L, Ottolia M, Nicoll DA, Philipson KD (2000) Functional analysis of a disulfide bond in the cardiac Na+-Ca2+ exchanger. J Biol Chem 275:182–188

    Article  CAS  PubMed  Google Scholar 

  28. Sur C, Schloss P, Betz H (1997) The rat serotonin transporter: identification of cysteine residues important for substrate transport. Biochem Biophys Res Commun 241:68–72

    Article  CAS  PubMed  Google Scholar 

  29. Turk E, Kerner CJ, Lostao MP, Wright EM (1996) Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem 271:1925–1934

    Article  CAS  PubMed  Google Scholar 

  30. van Iwaarden PR, Pastore JC, Konings WN, Kaback HR (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30:9595–9600

    PubMed  Google Scholar 

  31. Werner A, Biber J, Forgo J, Palacin M, Murer H (1990) Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J Biol Chem 265:12331–12336

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Forster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, K., Forster, I.C., Stange, G. et al. Essential cysteine residues of the type IIa Na+/Pi cotransporter. Pflugers Arch - Eur J Physiol 446, 203–210 (2003). https://doi.org/10.1007/s00424-003-1039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1039-6

Keywords

Navigation