Skip to main content

Advertisement

Log in

Development of novel antibacterial drugs to combat multiple resistant organisms

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Infections due to multidrug-resistant (MDR) bacteria are increasing both in hospitals and in the community and are characterized by high mortality rates. New molecules are in development to face the need of active compounds toward resistant gram-positive and gram-negative pathogens. In particular, the Infectious Diseases Society of America (IDSA) has supported the initiative to develop ten new antibacterials within 2020. Principal targets are the so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacteriaceae).

Purpose

To review the characteristics and the status of development of new antimicrobials including new cephalosporins, carbapenems, beta-lactamase inhibitors, aminoglycosides, quinolones, oxazolidones, glycopeptides, and tetracyclines.

Conclusions

While numerous new compounds target resistant gram-positive pathogens and have been approved for clinical use, very few new molecules are active against MDR gram-negative pathogens, especially carbapenemase producers. New glycopeptides and oxazolidinones are highly efficient against methicillin-resistant S. aureus (MRSA), and new cephalosporins and carbapenems also display activity toward MDR gram-positive bacteria. Although new cephalosporins and carbapenems have acquired activity against MRSA, they offer few advantages against difficult-to-treat gram-negatives. Among agents that are potentially active against MDR gram-negatives are ceftozolane/tazobactam, new carbapenems, the combination of avibactam with ceftazidime, and plazomicin. Since a relevant number of promising antibiotics is currently in development, regulatory approvals over the next 5 years are crucial to face the growing threat of multidrug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  2. Giske CG, Monnet DL, Cars O, Carmeli Y, ReAct-Action on Antibiotic R (2008) Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 52:813–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kallen AJ, Srinivasan A (2010) Current epidemiology of multidrug-resistant gram-negative bacilli in the United States. Infect Control Hosp Epidemiol 31(Suppl 1):S51–S54

    Article  PubMed  Google Scholar 

  4. Kanj SS, Kanafani ZA (2011) Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc 86:250–259

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gupta N, Limbago BM, Patel JB, Kallen AJ (2011) Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53:60–67

    Article  PubMed  Google Scholar 

  6. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796

    Article  PubMed  Google Scholar 

  7. Hersh AL, Newland JG, Beekmann SE, Polgreen PM, Gilbert DN (2012) Unmet medical need in infectious diseases. Clin Infect Dis 54:1677–1678

    Article  PubMed Central  PubMed  Google Scholar 

  8. DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med 166:2138–2144

    Article  PubMed  Google Scholar 

  10. Moise-Broder PA, Sakoulas G, Eliopoulos GM, Schentag JJ, Forrest A, Moellering RC Jr (2004) Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis 38:1700–1705

    Article  CAS  PubMed  Google Scholar 

  11. Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr, Eliopoulos GM (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Piddock LJ (2012) The crisis of no new antibiotics–what is the way forward? Lancet Infect Dis 12:249–253

    Article  PubMed  Google Scholar 

  13. Infectious Diseases Society of A (2010) The 10 × '20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50:1081–1083

    Article  Google Scholar 

  14. Poon H, Chang MH, Fung HB (2012) Ceftaroline fosamil: a cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clin Ther 34:743–765

    Article  CAS  PubMed  Google Scholar 

  15. Biek D, Critchley IA, Riccobene TA, Thye DA (2010) Ceftaroline fosamil: a novel broad-spectrum cephalosporin with expanded anti-Gram-positive activity. J Antimicrob Chemother 65(Suppl 4):iv9–iv16

    CAS  PubMed  Google Scholar 

  16. Sader HS, Fritsche TR, Kaniga K, Ge Y, Jones RN (2005) Antimicrobial activity and spectrum of PPI-0903 M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob Agents Chemother 49:3501–3512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Corey GR, Wilcox M, Talbot GH, Friedland HD, Baculik T, Witherell GW, Critchley I, Das AF, Thye D (2010) Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis 51:641–650

    Article  CAS  PubMed  Google Scholar 

  18. File TM Jr, Low DE, Eckburg PB, Talbot GH, Friedland HD, Lee J, Llorens L, Critchley I, Thye D (2010) Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis 51:1395–1405

    Article  CAS  PubMed  Google Scholar 

  19. Queenan AM, Shang W, Kania M, Page MG, Bush K (2007) Interactions of ceftobiprole with beta-lactamases from molecular classes A to D. Antimicrob Agents Chemother 51:3089–3095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Walkty A, Adam HJ, Laverdiere M, Karlowsky JA, Hoban DJ, Zhanel GG, Canadian Antimicrobial Resistance A (2011) In vitro activity of ceftobiprole against frequently encountered aerobic and facultative Gram-positive and Gram-negative bacterial pathogens: results of the CANWARD 2007-2009 study. Diagn Microbiol Infect Dis 69:348–355

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson SC, Welte T, File TM Jr, Strauss RS, Michiels B, Kaul P, Balis D, Arbit D, Amsler K, Noel GJ (2012) A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int J Antimicrob Agents 39:240–246

    Article  CAS  PubMed  Google Scholar 

  22. Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS (2008) A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 46:647–655

    Article  PubMed  Google Scholar 

  23. Titelman E, Karlsson IM, Ge Y, Giske CG (2011) In vitro activity of CXA-101 plus tazobactam (CXA-201) against CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 70:137–141

    Article  CAS  PubMed  Google Scholar 

  24. Sader HS, Rhomberg PR, Farrell DJ, Jones RN (2011) Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother 55:2390–2394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Moya B, Zamorano L, Juan C, Ge Y, Oliver A (2010) Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:3933–3937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Clinicaltrials.gov. Study comparing the safety and efficacy of intravenous CXA-201 and intravenous levofloxacin in complicated urinary tract infection, including pyelonephritis. Identifier NCT01345929.

  27. Clinicaltrials.gov. Study comparing the safety and efficacy of intravenous CXA-201 and intravenous levofloxacin in complicated urinary tract infection, including pyelonephritis. Identifier NCT01345955

  28. Clinicaltrials.gov. Study comparing the safety and efficacy of intravenous CXA-201 and intravenous meropenem in complicated intraabdominal infections. Identifier NCT01445678

  29. Clinicaltrials.gov. Safety and efficacy of intravenous CXA-201 and intravenous meropenem in complicated intra-abdominal infections. Identifier NCT01445665

  30. Sato N, Kijima K, Koresawa T, Mitomi N, Morita J, Suzuki H, Hayashi H, Shibasaki S, Kurosawa T, Totsuka K (2008) Population pharmacokinetics of tebipenem pivoxil (ME1211), a novel oral carbapenem antibiotic, in pediatric patients with otolaryngological infection or pneumonia. Drug Metab Pharmacokinet 23:434–446

    Article  CAS  PubMed  Google Scholar 

  31. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011) Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Goa KL, Noble S (2003) Panipenem/betamipron. Drugs 63:913–925, discussion 926

    Article  CAS  PubMed  Google Scholar 

  33. Hilas O, Ezzo DC, Jodlowski TZ (2008) Doripenem (doribax), a new carbapenem antibacterial agent. P T Peer Rev J Formul Manag 33:134–180

    Google Scholar 

  34. Queenan AM, Shang W, Flamm R, Bush K (2010) Hydrolysis and inhibition profiles of beta-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob Agents Chemother 54:565–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bulik CC, Nicolau DP (2011) Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 55:3002–3004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ceccarelli G, Falcone M, Giordano A, Mezzatesta ML, Caio C, Stefani S, Venditti M (2013) Successful ertapenem-doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 57:2900–2901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Giamarellou H, Galani L, Baziaka F, Karaiskos I (2013) Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 57:2388–2390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Thomson KS (2012) Double-carbapenem therapy not proven to be more active than carbapenem monotherapy against KPC-positive Klebsiella pneumoniae. Antimicrob Agents Chemother 56:4037, author reply 4038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Matthews SJ, Lancaster JW (2009) Doripenem monohydrate, a broad-spectrum carbapenem antibiotic. Clin Ther 31:42–63

    Article  CAS  PubMed  Google Scholar 

  40. Chen HY, Livermore DM (1994) In-vitro activity of biapenem, compared with imipenem and meropenem, against Pseudomonas aeruginosa strains and mutants with known resistance mechanisms. J Antimicrob Chem 33:949–958

    Article  CAS  Google Scholar 

  41. Jia B, Lu P, Huang W, Li C, Huang A, Zhou X, Zhang W, Wu G, Zhang G (2010) A multicenter, randomized controlled clinical study on biapenem and imipenem/cilastatin injection in the treatment of respiratory and urinary tract infections. Chemotherapy 56:285–290

    Article  CAS  PubMed  Google Scholar 

  42. Perry CM, Ibbotson T (2002) Biapenem. Drugs 62:2221–2234, discussion 2235

    Article  CAS  PubMed  Google Scholar 

  43. Koga T, Abe T, Inoue H, Takenouchi T, Kitayama A, Yoshida T, Masuda N, Sugihara C, Kakuta M, Nakagawa M, Shibayama T, Matsushita Y, Hirota T, Ohya S, Utsui Y, Fukuoka T, Kuwahara S (2005) In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob Agents Chemother 49:3239–3250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sugihara K, Sugihara C, Matsushita Y, Yamamura N, Uemori M, Tokumitsu A, Inoue H, Kakuta M, Namba E, Nasu H, Koga T (2010) In vivo pharmacodynamic activity of tomopenem (formerly CS-023) against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus in a murine thigh infection model. Antimicrob Agents Chemother 54:5298–5302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Breilh D, Texier-Maugein J, Allaouchiche B, Saux MC, Boselli E (2013) Carbapenems. J Chemother 25:1–17

    Article  CAS  PubMed  Google Scholar 

  46. Livermore DM, Mushtaq S, Warner M (2009) Activity of the anti-MRSA carbapenem razupenem (PTZ601) against Enterobacteriaceae with defined resistance mechanisms. J Antimicrob Chemother 64:330–335

    Article  CAS  PubMed  Google Scholar 

  47. MacGowan AP, Noel A, Tomaselli S, Elliott H, Bowker K (2011) Pharmacodynamics of razupenem (PZ601) studied in an in vitro pharmacokinetic model of infection. Antimicrob Agents Chemother 55:1436–1442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tran CM, Tanaka K, Yamagishi Y, Goto T, Mikamo H, Watanabe K (2011) In vitro antimicrobial activity of razupenem (SMP-601, PTZ601) against anaerobic bacteria. Antimicrob Agents Chemother 55:2398–2402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Ehmann DE, Jahic H, Ross PL, Gu RF, Hu J, Kern G, Walkup GK, Fisher SL (2012) Avibactam is a covalent, reversible, non-beta-lactam beta-lactamase inhibitor. Proc Natl Acad Sci U S A 109:11663–11668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Crandon JL, Nicolau DP (2013) Human simulated studies of aztreonam and aztreonam-avibactam to evaluate activity against challenging gram-negative organisms, including metallo-beta-lactamase producers. Antimicrob Agents Chemother 57:3299–3306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. LevasseurP, Girard AM, Miossec C, Pace J, Coleman K (2015) In vitro antibacterial activity of the ceftazidime-avibactam combination against Enterobacteriaceae, including strains with well characterized beta-lactamases. Antimicrob Agents Chem

  52. Livermore DM, Mushtaq S, Warner M, Zhang J, Maharjan S, Doumith M, Woodford N (2011) Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-Producing Enterobacteriaceae. Antimicrob Agents Chemother 55:390–394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Vazquez JA, Gonzalez Patzan LD, Stricklin D, Duttaroy DD, Kreidly Z, Lipka J, Sable C (2012) Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin 28:1921–1931

    Article  CAS  PubMed  Google Scholar 

  54. Lucasti C, Popescu, I, Ramesh, M, Lipka, J, Sable, S (2011) Efficacy and safety of ceftazidime/NXL104 plus metronidazole vs. meropenemin the treatment of complicated intraabdominalinfections in hospitalized adults. Presented at: EuropeanCongress of Clinical Microbiology andInfectious Diseases and International Congressof Chemotherapy. Milan, Italy, 7–10 May 2011 (P1532)

  55. Hirsch EB, Ledesma KR, Chang KT, Schwartz MS, Motyl MR, Tam VH (2012) In vitro activity of MK-7655, a novel beta-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria. Antimicrob Agents Chemother 56:3753–3757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950

    Article  CAS  PubMed  Google Scholar 

  57. Shaw JP, Seroogy J, Kaniga K, Higgins DL, Kitt M, Barriere S (2005) Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob Agents Chemother 49:195–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hope R, Chaudhry A, Adkin R, Livermore DM (2013) In vitro activity of telavancin and comparators against selected groups of Gram-positive cocci. Int J Antimicrob Agents 41:213–217

    Article  CAS  PubMed  Google Scholar 

  59. Mendes RE, Sader HS, Jones RN (2010) Activity of telavancin and comparator antimicrobial agents tested against Staphylococcus spp. isolated from hospitalised patients in Europe (2007-2008). Int J Antimicrob Agents 36:374–379

    Article  CAS  PubMed  Google Scholar 

  60. Pfaller MA, Mendes RE, Sader HS, Jones RN (2010) Telavancin activity against Gram-positive bacteria isolated from respiratory tract specimens of patients with nosocomial pneumonia. J Antimicrob Chemother 65:2396–2404

    Article  CAS  PubMed  Google Scholar 

  61. Putnam SD, Sader HS, Moet GJ, Mendes RE, Jones RN (2010) Worldwide summary of telavancin spectrum and potency against Gram-positive pathogens: 2007 to 2008 surveillance results. Diagn Microbiol Infect Dis 67:359–368

    Article  CAS  PubMed  Google Scholar 

  62. Bassetti M, Mikulska M, Righi E, Nicolini L, Viscoli C (2009) The role of telavancin in the treatment of MRSA infections in hospital. Expert Opin Investig Drugs 18:521–529

    Article  CAS  PubMed  Google Scholar 

  63. Mendes RE, Sader HS, Flamm RK, Farrell DJ, Jones RN (2015) Telavancin in vitro activity against a USA collection of methicillin-resistant Staphylococcus aureus, including resistant subsets. Antimicrob Agents Chem

  64. Clinicaltrials.gov.Comparison of Telavancin and Vancomycin for Complicated Skin and Skin Structure Infections With a Focus on Methicillin-resistant Staphylococcus Aureus (ATLAS1). Identifier NCT00091819

  65. Clinicaltrials.gov.Comparison of Telavancin and Vancomycin for Complicated Skin and Skin Structure Infections With a Focus on Methicillin-resistant Staphylococcus Aureus (ATLAS1). Identifier NCT00107978

  66. Clinicaltrials.gov. Phase 2 Trial of TD-6424 (Telavancin) Versus Standard Therapy for Complicated Gram Positive Skin and Skin Structure Infections (Gram Positive cSSSI) (FAST2). Identifier NCT00077675

  67. Clinicaltrials.gov. Phase 2 Trial of TD-6424 (Telavancin) Versus Standard Therapy for Complicated Gram Positive Skin and Skin Structure Infections (Gram Positive cSSSI) (FAST). Identifier NCT00061633

  68. Stryjewski ME, Barriere SL, O'Riordan W, Dunbar LM, Hopkins A, Genter FC, Corey GR (2012) Efficacy of telavancin in patients with specific types of complicated skin and skin structure infections. J Antimicrob Chemother 67:1496–1502

    Article  CAS  PubMed  Google Scholar 

  69. Hooper CY, Smith WJ (2012) Telavancin for the treatment of nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA). Ther Clin Risk Manag 8:131–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Rubinstein E, Lalani T, Corey GR, Kanafani ZA, Nannini EC, Rocha MG, Rahav G, Niederman MS, Kollef MH, Shorr AF, Lee PC, Lentnek AL, Luna CM, Fagon JY, Torres A, Kitt MM, Genter FC, Barriere SL, Friedland HD, Stryjewski ME, Group AS (2011) Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis 52:31–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Polyzos KA, Mavros MN, Vardakas KZ, Makris MC, Rafailidis PI, Falagas ME (2012) Efficacy and safety of telavancin in clinical trials: a systematic review and meta-analysis. PLoS One 7:e41870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Clinicaltrials.gov. A Phase 3 Telavancin Staph Aureus Bacteremia Trial. Identifier NCT02208063

  73. MorrisseyI, Seifert H, Canton R, Nordmann P, Stefani S, Macgowan A, Janes R, Knight D, Oritavancin Study G (2013) Activity of oritavancin against methicillin-resistant staphylococci, vancomycin-resistant enterococci and beta-haemolytic streptococci collected from western European countries in 2011. J Antimicrob Chemother 68:164–167

    Article  CAS  Google Scholar 

  74. Corey GR, Good S, Jiang H, Moeck G, Wikler M, Green S, Manos P, Keech R, Singh R, Heller B, Bubnova N, O'Riordan W, Investigators SI (2015) Single-dose oritavancin versus 7-10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis 60:254–262

    Article  PubMed  Google Scholar 

  75. Goldstein EJ, Citron DM, Merriam CV, Warren Y, Tyrrell K, Fernandez HT (2003) In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria. Antimicrob Agents Chemother 47:1968–1971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Jones RN, Sader HS, Flamm RK (2013) Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011). Diagn Microbiol Infect Dis 75:304–307

    Article  CAS  PubMed  Google Scholar 

  77. Karlowsky JA, Adam HJ, Poutanen SM, Hoban DJ, Zhanel GG, Canadian Antimicrobial Resistance A (2011) In vitro activity of dalbavancin and telavancin against staphylococci and streptococci isolated from patients in Canadian hospitals: results of the CANWARD 2007-2009 study. Diagn Microbiol Infect Dis 69:342–347

    Article  CAS  PubMed  Google Scholar 

  78. Zhanel GG, Trapp S, Gin AS, DeCorby M, Lagace-Wiens PR, Rubinstein E, Hoban DJ, Karlowsky JA (2008) Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of Gram-positive infections. Expert Rev Anti-Infect Ther 6:67–81

    Article  CAS  PubMed  Google Scholar 

  79. Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW (2014) Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med 370:2169–2179

    Article  PubMed  CAS  Google Scholar 

  80. Jauregui LE, Babazadeh S, Seltzer E, Goldberg L, Krievins D, Frederick M, Krause D, Satilovs I, Endzinas Z, Breaux J, O'Riordan W (2005) Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis 41:1407–1415

    Article  CAS  PubMed  Google Scholar 

  81. Keel RA, Tessier PR, Crandon JL, Nicolau DP (2012) Comparative efficacies of human simulated exposures of tedizolid and linezolid against Staphylococcus aureus in the murine thigh infection model. Antimicrob Agents Chemother 56:4403–4407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Urbina O, Ferrandez O, Espona M, Salas E, Ferrandez I, Grau S (2013) Potential role of tedizolid phosphate in the treatment of acute bacterial skin infections. Drug Des Dev Ther 7:243–265

    CAS  Google Scholar 

  83. Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P (2014) Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 14:696–705

    Article  CAS  PubMed  Google Scholar 

  84. Lawrence L, Danese P, DeVito J, Franceschi F, Sutcliffe J (2008) In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob Agents Chemother 52:1653–1662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Prokocimer P, De Anda C, Fang E, Mehra P, Das A (2013) Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. Jama 309:559–569

    Article  CAS  PubMed  Google Scholar 

  86. ClinicalTrial.com. Safety and Efficacy Study of Oxazolidinone to Treat Pneumonia. Identifier NCT00640926

  87. ClinicalTrial.com. Safety and Efficacy Study of Oxazolidinones to Treat Uncomplicated Skin Infections. Identifier NCT00646958

  88. Shaw KJ, Barbachyn MR (2011) The oxazolidinones: past, present, and future. Ann N Y Acad Sci 1241:48–70

    Article  CAS  PubMed  Google Scholar 

  89. Hooper DC (1999) Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2:38–55

    Article  CAS  PubMed  Google Scholar 

  90. Hooper DC (2000) New uses for new and old quinolones and the challenge of resistance. Clin Infect Dis 30:243–254

    Article  CAS  PubMed  Google Scholar 

  91. Dryden MS (2010) Complicated skin and soft tissue infection. J Antimicrob Chemother 65(Suppl 3):iii35–iii44

    CAS  PubMed  Google Scholar 

  92. Falagas ME, Matthaiou DK, Bliziotis IA (2007) Systematic review: fluoroquinolones for the treatment of intra-abdominal surgical infections. Aliment Pharmacol Ther 25:123–131

    Article  CAS  PubMed  Google Scholar 

  93. Dalhoff A (1994) Quinolone resistance in pseudomonas aeruginosa and staphylococcus aureus. Development during therapy and clinical significance. Infection 22(Suppl 2):S111–S121

    Article  PubMed  Google Scholar 

  94. Lemaire S, Tulkens PM, Van Bambeke F (2011) Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob Agents Chemother 55:649–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Remy JM, Tow-Keogh CA, McConnell TS, Dalton JM, Devito JA (2012) Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization. J Antimicrob Chemother 67:2814–2820

    Article  CAS  PubMed  Google Scholar 

  96. Almer LS, Hoffrage JB, Keller EL, Flamm RK, Shortridge VD (2004) In vitro and bactericidal activities of ABT-492, a novel fluoroquinolone, against Gram-positive and Gram-negative organisms. Antimicrob Agents Chemother 48:2771–2777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Nilius AM, Shen LL, Hensey-Rudloff D, Almer LS, Beyer JM, Balli DJ, Cai Y, Flamm RK (2003) In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob Agents Chemother 47:3260–3269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Longcor J, Lawrence L, Duffy E, Hopkins S (2012) Objective measures of clinical efficacy in a phase 2b exploratory study of delafloxacin compared to vancomycin and linezolid in adults with acute bacterial skin and skin structure infections (ABSSSI). Presented at 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy ICAAC San Francisco, CA September 9-12, 2012

  99. Clinicaltrials.gov. A Phase 3, Multicenter, Randomized, Double-blind, Active-controlled Study to Evaluate the Efficacy and Safety of Delafloxacin Compared With Vancomycin + Aztreonam in Patients With Acute Bacterial Skin and Skin Structure Infections. Identifier NCT01811732

  100. Clinicaltrials.gov. A Phase 3, Multicenter, Randomized, Double-blind, Active Controlled Study to Evaluate the Efficacy + Safety of IV + Oral Delafloxacin Compared With Vancomycin + Aztreonam in Patients With Acute Bacterial Skin and Skin Structure Infections. Identifier NCT01984684

  101. King CHR, Lin L, Leunk R (2008) In vitro resistance development to nemonoxacin for Streptococcus pneumoniae. In: Program and abstracts of 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; October 25–28, 2008; Washington, DC. Abstract C1-1971

  102. Lauderdale TL, Shiau YR, Lai JF, Chen HC, King CH (2010) Comparative in vitro activities of nemonoxacin (TG-873870), a novel nonfluorinated quinolone, and other quinolones against clinical isolates. Antimicrob Agents Chemother 54:1338–1342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Lai CC, Lee KY, Lin SW, Chen YH, Kuo HY, Hung CC, Hsueh PR (2014) Nemonoxacin (TG-873870) for treatment of community-acquired pneumonia. Expert Rev Anti-Infect Ther 12:401–417

    Article  CAS  PubMed  Google Scholar 

  104. Qin X, Huang H (2014) Review of nemonoxacin with special focus on clinical development. Drug Des Dev Ther 8:765–774

    CAS  Google Scholar 

  105. ClinicalTrial.gov. A Phase III Study to Evaluate the Efficacy and Safety of Intravenous Infusion of Nemonoxacin in Treating CAP. Identifier NCT02205112

  106. Park HS, Kim HJ, Seol MJ, Choi DR, Choi EC, Kwak JH (2006) In vitro and in vivo antibacterial activities of DW-224a, a new fluoronaphthyridone. Antimicrob Agents Chemother 50:2261–2264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Kim EJ, Shin WH, Kim KS, Han SS (2004) Safety pharmacology of DW-224a, a novel fluoroquinolone antibiotic agent. Drug Chem Toxicol 27:295–307

    Article  CAS  PubMed  Google Scholar 

  108. Choi D, Kim YS, Kim MJ, Back KR, Lim CH. A Phase 2, Multi-dose, Double-Blind, Randomized, Multicenter, Comparative Study of Zabofloxacin vs Moxifloxacin in the Treatment of Mild to Moderate Community-Acquired Pneumonia. Presented at 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy ICAAC San Francisco, CA September 9-12, 2012

  109. ClinicalTrials.gov. Safety and Efficacy Study of Oral Zabofloxacin in Community Acquired Pneumonia. Identifier NCT01081964

  110. Stubbings W, Leow P, Yong GC, Goh F, Korber-Irrgang B, Kresken M, Endermann R, Labischinski H (2011) In vitro spectrum of activity of finafloxacin, a novel, pH-activated fluoroquinolone, under standard and acidic conditions. Antimicrob Agents Chemother 55:4394–4397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Higgins PG, Stubbings W, Wisplinghoff H, Seifert H (2010) Activity of the investigational fluoroquinolone finafloxacin against ciprofloxacin-sensitive and -resistant Acinetobacter baumannii isolates. Antimicrob Agents Chemother 54:1613–1615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. ClinicaTrial.org. Finafloxacin 300 mg Twice a Day (b.i.d.) Versus Ciprofloxacin 250 mg Twice a Day (b.i.d) in Patients With Lower Uncomplicated UTI (uUTI) (FLUT). Identifier NCT00722735

  113. ClinicalTrials.gov. A Multi-Dose, Double-Blind, Double-Dummy, Active- Control, Randomized Clinical (Phase II) Study of Two Dosing Regimens of Finafloxacin for the Treatment of cUTI and/or Acute Pyelonephritis Requiring Hospitalisation. Identifier NCT01928433

  114. Biedenbach DJ, Farrell DJ, Flamm RK, Liverman LC, McIntyre G, Jones RN (2012) Activity of JNJ-Q2, a new fluoroquinolone, tested against contemporary pathogens isolated from patients with community-acquired bacterial pneumonia. Int J Antimicrob Agents 39:321–325

    Article  CAS  PubMed  Google Scholar 

  115. ClinicalTrials.org. Efficacy and Safety Study of JNJ-32729463 Compared With Moxifloxacin for the Treatment of Subjects Requiring Hospitalization for Community-Acquired Bacterial Pneumonia. Identifier NCT01198626

  116. ClinicalTrials.org. Efficacy and Safety Study of JNJ-32729463 for Treating Complicated Skin and Skin Structure Infections Compared to Linezolid (Zyvox). Identifier NCT01128530

  117. Appelbaum PC, Pankuch GA, Bozdogan B, Lin G, Jacobs MR, Patel MV, Gupte SV, Jafri MA, De Souza NJ, Khorakiwala HF (2005) Activity of the new quinolone WCK 771 against pneumococci. Clin Microbiol Infect 11:9–14

    Article  CAS  PubMed  Google Scholar 

  118. Yamakawa T, Mitsuyama J, Hayashi K (2002) In vitro and in vivo antibacterial activity of T-3912, a novel non-fluorinated topical quinolone. J Antimicrob Chemother 49:455–465

    Article  CAS  PubMed  Google Scholar 

  119. Chang MH, Fung HB (2010) Besifloxacin: a topical fluoroquinolone for the treatment of bacterial conjunctivitis. Clin Ther 32:454–471

    Article  CAS  PubMed  Google Scholar 

  120. Galani I, Souli M, Daikos GL, Chrysouli Z, Poulakou G, Psichogiou M, Panagea T, Argyropoulou A, Stefanou I, Plakias G, Giamarellou H, Petrikkos G (2012) Activity of plazomicin (ACHN-490) against MDR clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. from Athens, Greece. J Chemother 24:191–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Zhanel GG, Lawson CD, Zelenitsky S, Findlay B, Schweizer F, Adam H, Walkty A, Rubinstein E, Gin AS, Hoban DJ, Lynch JP, Karlowsky JA (2012) Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti-Infect Ther 10:459–473

    Article  CAS  PubMed  Google Scholar 

  122. Poulikakos P, Falagas ME (2013) Aminoglycoside therapy in infectious diseases. Expert Opin Pharmacother 14:1585–1597

    Article  CAS  PubMed  Google Scholar 

  123. ClinicalTrial.org. A Study of Plazomicin Compared With Colistin in Patients With Infection Due to Carbapenem-Resistant Enterobacteriaceae (CRE). Identifier NCT01970371

  124. Clark RB, Hunt DK, He M, Achorn C, Chen CL, Deng Y, Fyfe C, Grossman TH, Hogan PC, O'Brien WJ, Plamondon L, Ronn M, Sutcliffe JA, Zhu Z, Xiao XY (2012) Fluorocyclines. 2. Optimization of the C-9 side-chain for antibacterial activity and oral efficacy. J Med Chem 55:606–622

    Article  CAS  PubMed  Google Scholar 

  125. Grossman TH, Starosta AL, Fyfe C, O'Brien W, Rothstein DM, Mikolajka A, Wilson DN, Sutcliffe JA (2012) Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother 56:2559–2564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Sutcliffe JA, O'Brien W, Fyfe C, Grossman TH (2013) Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother 57:5548–5558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Solomkin JS, Ramesh MK, Cesnauskas G, Novikovs N, Stefanova P, Sutcliffe JA, Walpole SM, Horn PT (2014) Phase 2, randomized, double-blind study of the efficacy and safety of two dose regimens of eravacycline versus ertapenem for adult community-acquired complicated intra-abdominal infections. Antimicrob Agents Chemother 58:1847–1854

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, Tanaka SK, Levy SB (2014) In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 58:1127–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Robert D, Arbeit DR, Roberts JA, Forsythe AR, Johnston SM, Seyedi F, Pukshansky M, Tanaka SK (2008) Safety and efficacy of PTK 0796: results of the phase 2 study incomplicated skin and skin structure infections followingIV and oral step down therapy. 48th Annual ICAAC. In Program andAbstract of 48th Interscience Conference on Antimicrobial Agents andChemotherapy. Washington, DC USA: Abstr. L-1515b

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Bassetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassetti, M., Righi, E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbecks Arch Surg 400, 153–165 (2015). https://doi.org/10.1007/s00423-015-1280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-015-1280-4

Keywords

Navigation