Skip to main content
Log in

Extracellular GABA assisting in organizing dynamic cell assemblies to shorten reaction time to sensory stimulation

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Until recently, glia, which exceeds the number of neurons, was considered to only have supportive roles in the central nervous system, providing homeostatic controls and metabolic supports. However, recent studies suggest that glia interacts with neurons and plays active roles in information processing within neuronal circuits. To elucidate how glia contributes to neuronal information processing, we simulated a sensory neuron–glia (neuron–astrocyte) network model. It was investigated in association with ambient (extracellular) GABA level, because the astrocyte has a major role in removing extracellular GABA molecules. In the network model, transporters, embedded in plasma membranes of astrocytes, modulated local ambient GABA levels by actively removing extracellular GABA molecules which persistently acted on receptors in membranes outside synapses and provided pyramidal cells with inhibitory currents. Gap-junction coupling between astrocytes mediated a concordant decrease in local ambient GABA levels, which solicited a prompt population response of pyramidal cells (i.e., activation of an ensemble of pyramidal cells) to a sensory stimulus. As a consequence, the reaction time of a motor network, to which axons of pyramidal cells of the sensory network project, to the sensory stimulus was shortened. We suggest that the astrocytic gap-junction coupling may assist in organizing dynamic cell assemblies by coordinating a reduction in local ambient GABA levels, thereby shortening reaction time to sensory stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Reid L, Yang W, Bando Y, Peterka DS, Yuste R (2016) Imprinting and recalling cortical ensembles. Science 353:691–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dermietzel R, Hertberg EL, Kessler JA, Spray DC (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J Neurosci 11:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in neuronal modeling. The MIT Press, Cambridge, pp 1–25

    Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    Article  CAS  PubMed  Google Scholar 

  • Hoshino O (2009) GABA-transporter preserving ongoing-spontaneous neuronal activity at firing-subthreshold. Neural Comput 21:1683–1713

    Article  PubMed  Google Scholar 

  • Hoshino O (2012) Regulation of ambient GABA levels by neuron-glia signaling for reliable perception of multisensory events. Neural Comput 24:2964–2993

    Article  PubMed  Google Scholar 

  • Hoshino O (2014) Balanced crossmodal excitation and inhibition essential for maximizing multisensory gain. Neural Comput 26:1362–1385

    Article  PubMed  Google Scholar 

  • Hoshino O, Zheng M, Watanabe K (2018) Improved perceptual learning by control of extracellular GABA concentration by astrocytic gap junctions. Neural Comput 30:184–215

    Article  PubMed  Google Scholar 

  • Karnani MM, Agetsuma M, Yuste R (2014) A blanket of inhibition: functional inferences from dense inhibitory connectivity. Curr Opin Neurobiol 26:96–102

    Article  CAS  PubMed  Google Scholar 

  • Losi G, Mariotti L, Carmignoto G (2014) GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc Lond B 369:20130609

    Article  CAS  Google Scholar 

  • Pannasch U, Rouach N (2013) Emerging role for astroglial networks in information processing: from synapse to behavior. Trends Neurosci 36:405–417

    Article  CAS  PubMed  Google Scholar 

  • Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci USA 113:E2675–E2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Maunsell JH (2015) Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci 19:78–85

    Article  PubMed  Google Scholar 

  • Richerson GB (2004) Looking for GABA in all the wrong places: the relevance of extrasynaptic GABA(A) receptors to epilepsy. Epilepsy Curr 4:239–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Tallon-Baudry C (2009) The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci 14:321–332

    Article  Google Scholar 

  • Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca\(^{2+}\)-dependent uptake of extracellular K\(^+\). Sci Signal 5:ra26

  • Wu Y, Wang W, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang W, Diez-Sampedro A, Richerson GB (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56:851–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon BE, Lee CJ (2014) GABA as a rising gliotransmitter. Front Neural Circuits 8:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuste R (2015) From the neuron doctrine to neural networks. Nat Rev Neurosci 16:487–497

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Hoshino.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, R., Kameno, R., Kobayashi, T. et al. Extracellular GABA assisting in organizing dynamic cell assemblies to shorten reaction time to sensory stimulation. Biol Cybern 113, 257–271 (2019). https://doi.org/10.1007/s00422-019-00793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-019-00793-x

Keywords

Navigation