Skip to main content
Log in

Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Timely release of dopamine (DA) at the striatum seems to be important for reinforcement learning (RL) mediated by the basal ganglia. Houk et al. (in: Houk et al (eds) Models of information processing in the basal ganglia, (1995) proposed a cellular signaling pathway model to characterize the interaction between DA and glutamate pathways that have a role in RL. The model simulation results, using GENESIS KINETIKIT simulator, point out that there is not only prolongation of duration as proposed by Houk et al. (1995), but also an enhancement in the amplitude of autophosphorylation of CaMKII. Further, the autophosphorylated form of CaMKII may form a basis for the “eligibility trace” condition required in RL. This simulation study is the first of its kind to support the comprehensive theoretical proposal of Houk et al. (1995).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn JH, Sung JY, McAvoy T, Nishi A, Janssens V, Goris J, Greengard P, Nairn AC (2007) The B′′/PR72 subunit mediates Ca2+-dependent dephosphorylation of darpp-32 by protein phosphatase 2a. Proc Natl Acad Sci USA 104(23): 9876–9881

    Article  PubMed  CAS  Google Scholar 

  • Akaike A, Ohno M, Sasa Y, Takaori S (1987) Excitatory and inhibitory effects of dopamine on neuronal activity of the caudate nucleus neurons in vitro. Brain Res 418(2): 262–272

    Article  PubMed  CAS  Google Scholar 

  • Alberto CO, Trask RB, Quinlan ME, Hirasawa M (2006) Bidirectional dopaminergic modulation of excitator synaptic transmission in orexin neurons. J Neurosci 26(39): 10043–10050

    Article  PubMed  CAS  Google Scholar 

  • Bamford NS, Robinson S, Palmiter RD, Joyce J, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24(4): 9541–9552

    Article  PubMed  CAS  Google Scholar 

  • Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKII during long term potentiation. Science 276: 2042–2045

    Article  PubMed  CAS  Google Scholar 

  • Berstein G, Blank JL, Smrcka AV, Higashijima T, Sternweis PC, Exton JH, Ross EM (1992) Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, G q/11, and phospholipase C-β1. J Biol Chem 267(12): 8081–8088

    PubMed  CAS  Google Scholar 

  • Bhalla US (1998) The network within: signaling pathways. In: Bower JM, Beeman D (eds) The book of GENESIS: exploring realistic neural models with the general neural simulation system, 2nd edn. Springer, New York, pp 169–190

    Google Scholar 

  • Bhalla US (2004) Signaling in small subcellular volumes I. Stochastic and diffusion effects on individual pathways. Biophys J 87: 733–744

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283: 381–387

    Article  PubMed  CAS  Google Scholar 

  • Blackwell KT (2005) Modeling calcium concentration and biochemical reactions. wam-bamm ’05 tutorials. Brains Minds Media 1:bmm224 (urn:nbn:de:0009-3-2245)

  • Blackwell KT, Kotaleski HJ (2002) Modeling the dynamics of second messenger pathways. In: Kotter R (eds) Neuroscience databases. A practical guide. Kluwer, Boston, pp 63–80

    Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the general neural simulation system. Springer, New York

    Google Scholar 

  • Carter AG, Soler-Llavina GJ, Sabatini BL (2007) Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 27(33): 8967–8977

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 54: 453–508

    Article  Google Scholar 

  • Colbran RJ (2004) Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J Neurosci 24(39): 8404–8409

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL, Schultz W (1999) A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci 6: 191–214

    Article  PubMed  CAS  Google Scholar 

  • Corvol JC, Studler JM, Schonn JS, Girault JA, Herve D (2001) Gα(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 76: 1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Cottrell JR, Dube GR, Egles C, Liu G (2000) Distribution, density and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol 84: 1573–1587

    PubMed  CAS  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1995) Fast kinetic models for simulating AMPA, NMDA, GABA A and GABA B receptor. In: Bower J (eds) The neurobiology of computation. Kluwer, Norwell, pp 9–14

    Google Scholar 

  • Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1, 4, 5-triphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar purkinje cells. J Neurosci 25(4): 950–961

    Article  PubMed  CAS  Google Scholar 

  • Doqcs (2006) Kinetikit manual. NCBS, Bangalore. http://www.ncbs.res.in

  • Drinnan SL, Hope BT, Snutch TP, Vincent SR (1991) G olf in the basal ganglia. Mol Cell Neurosci 2: 66–70

    Article  PubMed  CAS  Google Scholar 

  • Erondu NE, Kennedy MB (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 5(12): 3270–3277

    PubMed  CAS  Google Scholar 

  • Francois G (1997) Prolonged and extra synaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 17(15): 5972–5978

    Google Scholar 

  • Franks KM, Bartol TM, Sejnowski TJ (2002) A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophys J 83: 2333–2348

    Article  PubMed  CAS  Google Scholar 

  • Franks KM, Stevens CF, Sejnowski TJ (2003) Independent sources of quantal variability at single glutamatergic synapses. J Neurosci 23(8): 3186–3195

    PubMed  CAS  Google Scholar 

  • Frerking M, Wilson M (1996) Saturation of postsynaptic receptors at central synapses. Curr Opin Neurobiol 6: 395–403

    Article  PubMed  CAS  Google Scholar 

  • Gardoni F, Caputi A, Cimino M, Pastorino L, Cattabeni F, Di Luca M (1998) Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J Neurochem 71: 1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Garris PA, Ciolkowski EL, Pastore P, Wightman RM (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14(10): 6084–6093

    PubMed  CAS  Google Scholar 

  • Gesei KP, Fedorov NB, Filipkowski R, Silva AJ (1998) Autophosphorylation at Thr286 of the calcium-calmodulin kinase II in LTP and learning. Science 279: 870–872

    Article  Google Scholar 

  • Glausier JR, Khan ZU, Muly EC (2009) Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. Cereb Cortex 19(8): 1820–1834

    Article  PubMed  Google Scholar 

  • Gould TD, Manji HK (2005) DARPP-32: a molecular switch at the nexus of reward pathway plasticity. Proc Natl Acad Sci USA 102(2): 253–254

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (1978) Phosphorylated proteins as physiological effecters. Science 199: 146–152

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23: 435–447

    Article  PubMed  CAS  Google Scholar 

  • Hanson PI, Schulman H (1992) Neuronal Ca2+/calmodulin-dependent protein kinase. Annu Rev Biochem 61: 559–601

    Article  PubMed  CAS  Google Scholar 

  • Hemmings JHC, Nairn AC, Greengad P (1984a) DARPP-32, a dopamine- and adenosine 3:5-monophosphate regulate neuronal phosphoprotein. J Biol Chem 259: 14491–14497

    PubMed  CAS  Google Scholar 

  • Hemmings JHC, Nairn AC, Aswad DW, Greengad P (1984b) DARPP-32 a dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. J Neurosci 4(1): 99–110

    PubMed  CAS  Google Scholar 

  • Hemmings JHC, Nairn AC, James EI, Greengad P (1990) Synthetic peptide analogs of DARPP-32(M r =  32,000 dopamine- and cyclic AMP-regulated phosphoprotein) an inhibitor of protein phosphatase-1. J Biol Chem 265(33): 20369–20378

    PubMed  CAS  Google Scholar 

  • Herve D, Levi-Strauss M, Marey-Semper I, Verney C, Tassin JP, Glowinski J, Girault J (1993) A G olf and G s in rat basal ganglia: possible involvement of G olf in the coupling of dopamine D1 receptor with adenylyl cyclase. J Neurosci 13: 2237–2248

    PubMed  CAS  Google Scholar 

  • Herve D, Rogard M, Levi-Strauss M (1995) Molecular analysis of the multiple G olf alpha subunit mRNAs in the rat brain. Brain Res Mol Brain Res 32: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Holmes WR (2000) Models of calmodulin trapping and CaM kinase II activation in a dendritic spine. J Comput Neurosci 8(1): 65–85

    Article  PubMed  CAS  Google Scholar 

  • Houk J, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Houk JC, Davis J, Beiser D (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, pp 250–268

    Google Scholar 

  • Hrabetova S, Serrano P, Blace N, Tse HW, Skifter DA, Jane DE, Monaghan DT, Sacktor TC (2000) Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J Neurosci 20(RC81): 1–6

    Google Scholar 

  • Hull CL (1943) Principles of behavior. Appleton-Century, New York

    Google Scholar 

  • Johansen EB, Killeen PR, Russell VA, Tripp G, Wickens JR, Williams R, Tannock J, Sagvolden T (2009) Origins of altered reinforcement effects in adhd behavioral and brain functions. Behav Brain Funct 5(7): 1–15

    Google Scholar 

  • Kalantzis G, Kubota Y, Shouval HZ (2009) Evaluating statistical methods used to estimate the number of postsynaptic receptors. J Neurosci Methods 178: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Kampa BM, Clements J, Jonas P, Stuart GJ (2004) Kinetics of Mg2+ unlock of NMDA receptors: implication for spike-timing dependent synaptic plasticity. J Physiol 556(7): 337–345

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure, stability, function, relationship of dendritic spines. Trends Neurosci 26(7): 360–368

    Article  PubMed  CAS  Google Scholar 

  • Kelly PT, McGurnness TL, Greengard P (1984) Evidence that the major post-synaptic density protein is a component of a calcium/calmodulin dependent protein kinase. Proc Natl Acad Sci USA 81: 945–949

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB (1997) The postsynaptic densities at glutamatergic synapses. Trends Neurosci 20: 264–268

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Huang T, Abel T, Blackwell KT (2010) Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS Comput Biol 6: 1–14

    CAS  Google Scholar 

  • King MM, Huang CY, Chock PB, Nairn AC, Hemmings Jr HC, Chan KF, Greengard P (1984) Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem 259(13): 8080–8083

    PubMed  CAS  Google Scholar 

  • Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13: 413–422

    PubMed  CAS  Google Scholar 

  • Korkotian E, Segal M (1999) Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc Natl Acad Sci USA 96(21): 12068–12072

    Article  PubMed  CAS  Google Scholar 

  • Leonard AS, Indra AL, Hemsworth DE, Horne MC, Hell JW (1999) Calcium/calmodulin dependent protein kinase II is associated with the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 96: 3239–3244

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax B (1993) Localization of D1 and D2 dopamine receptors in brain with subtype specific antibodies. Proc Natl Acad Sci USA 90: 8861–8865

    Article  PubMed  CAS  Google Scholar 

  • Lindskog M, Kim M, Wikstrom MA, Blackwell KT, Kotaleski JH (2006) Transient calcium and dopamine increase pKa activity and DARPP-32 phosphorylation. PLoS Comput Biol 2: 1045–1060

    Article  CAS  Google Scholar 

  • Lisman JE, Goldring MA (1988) Feasibility of long term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci USA 85: 5320–5324

    Article  PubMed  CAS  Google Scholar 

  • Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioral memory. Nat Rev Neurosci 3: 175–190

    Article  PubMed  CAS  Google Scholar 

  • MacGregor RJ (1987) Neural and brain modeling. Academic Press, San Diego

    Google Scholar 

  • Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 17(6234): 554–557

    Article  Google Scholar 

  • McAllister AK, Stevens CF (2000) Non saturation of AMPA and NMDA receptors at hippocampal synapses. Proc Natl Acad Sci USA 97: 6173–6178

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Doi T, Yoshimoto J, Doya K (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6(2): 1–16

    Article  Google Scholar 

  • Nimchinsky EA, Yasuda R, Oertner TG, Svoboda K (2004) The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J Neurosci 24(8): 2054–2064

    Article  PubMed  CAS  Google Scholar 

  • Nishi A, Snyder GL, Greengard P (1997) Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 17(21): 8147–8155

    PubMed  CAS  Google Scholar 

  • Nishi A, Snyder GL, Nairn AC, Greengard P (1999) Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons. J Neurochem 72: 2015–2021

    Article  PubMed  CAS  Google Scholar 

  • Nishi A, Bibb JA, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2002) Regulation of DARPP-32 dephosphorylation at PKA and Cdk5-sites by NMDA and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. J Neurochem 81: 832–841

    Article  PubMed  CAS  Google Scholar 

  • Nishi A, Liu F, Matsuyama S, Hamada M, Higashi H, Nairn AC, Greengard P (2003) Metabotropic mGlu5 receptors regulate adenosine A 2a receptor signaling. Proc Natl Acad Sci USA 100: 1322–1327

    Article  PubMed  Google Scholar 

  • Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB (1996) Identification of a phosphorylation site for calcium / calmodulindependent protein kinase II in the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 271(49): 31670–31678

    Article  PubMed  CAS  Google Scholar 

  • Otmakhov N, Tao-Cheng JH, Carpenter S, Asrican B, Dosemeci A, Reese TS, Lisman J (2004) Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. J Neurosci 24: 9324–9331

    Article  PubMed  CAS  Google Scholar 

  • Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25(26): 6235–6242

    Article  PubMed  CAS  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford

    Google Scholar 

  • Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Thomas SR (2003) Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J Neurosci 23(35): 11270–11278

    PubMed  CAS  Google Scholar 

  • Rosenmund C, Feltz A, Westbrook LG (1995) Synaptic NMDA receptor channels have a low open probability. J Neurosci 15(4): 2788–2795

    PubMed  CAS  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80(4): 1483–1521

    PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27

    PubMed  CAS  Google Scholar 

  • Schultz W (1999) The reward signal of midbrain dopamine neurons, news in physiological sciences. News Physiol Sci 14: 249– 255

    PubMed  CAS  Google Scholar 

  • Schultz W, Romo R, Ljungberg T, Mirenowicz J, Hollerman JR, Dickinson A (1995) Reward-related signals carried by dopamine neurons. In: Houk J, Davis J, Beiser D (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, pp 233–248

    Google Scholar 

  • Schultz W, Dayan P, Montangue PR (1997) A neural substrate of prediction and reward. Science 275(5306): 1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tedesco JL, Lee T, Chau-Wong M, Muller P, Bowles J, Whitakeer PM, McManus C, Tittler M, Weinreich P, Friend WC, Brown GM (1978) Dopamine receptor in the central nervous system. Fed Proc 37: 130–136

    CAS  Google Scholar 

  • Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321: 848–851

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Strathmann M, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252: 802–808

    Article  PubMed  CAS  Google Scholar 

  • Skeberdis VA, Chevaleyre V, Lau CG, Goldberg JH, Pettit DL, Suadicani SO, Lin Y, Bennett MV, Yuste R, Castillo PE, Zukin RS (2006) Protein kinase a regulates calcium permeability of NMDA receptors, protein kinase a regulates calcium permeability of NMDA receptors. Nat Neurosci 9(4): 501–510

    Article  PubMed  CAS  Google Scholar 

  • Smigel MD (1986) Purification of the catalyst of adenylate cyclase. J Biol Chem 261(4): 1976–1992

    PubMed  CAS  Google Scholar 

  • Strack S, Colbran RJ (1998) Autophosphorylation-dependent targeting of calcium/calmodulin dependent protein kinase II by the NR2B subunit of the N-methyl-d-aspartate receptor. J Biol Chem 273(33): 20689–20692

    Article  PubMed  CAS  Google Scholar 

  • Strack S, Barban MA, Wadzinski BE, Coibran RJ (1997) Differential inactivation of postsynaptic density-associated and soluble Ca2+/ca1modulin-dependent protein kinase II by protein phosphatases 1 and 2a. J Neurochem 68: 2119–2128

    Article  PubMed  CAS  Google Scholar 

  • Suri RE, Schultz W (2001) Temporal difference model reproduces anticipatory neural activity. Neural Comput 13(4): 841–862

    Article  PubMed  CAS  Google Scholar 

  • Sutton R, Barto AG (1990) Time derivative models of pavlovian reinforcement. In: Grabiel M, Moore J (eds) Learning and computational neuroscience: foundations of adaptive networks. MIT Press, Cambridge, pp 539–602

    Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Tang W, Krupinskiz J, Gilman AG (1991) Expression and characterization of calmodulin-activated (Type I) adenylyl cyclase. J Biol Chem 266(13): 8595–8603

    PubMed  CAS  Google Scholar 

  • Taylor SS, Buechler JA, Yonemoto W (1990) CAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59: 971–1005

    Article  PubMed  CAS  Google Scholar 

  • Tumova RM, Iwasiow K, Tiberi M (2003) Insight into the mechanism of dopamine D1-like receptor activation. J Biol Chem 10(7): 8146–8153

    Article  Google Scholar 

  • Vaughan CJ, Aherne AM, Lane E, Power O, Carey RM, O’Connel DP (2000) Identification and regional distribution of the dopamine D1a receptor in the gastrointestinal tract. Am J Physiol Regul Integr Comp Physiol 279: R599–R609

    PubMed  CAS  Google Scholar 

  • Volfovsky N, Parnas H, Segal M, Korkotian E (1999) Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J Neurophysiol 82(1): 450– 462

    PubMed  CAS  Google Scholar 

  • Wanjerkhede SM (2006) Sub-cellular model of reinforcement learning at the striatum: a computational investigation. PhD thesis

  • Wanjerkhede SM, Bapi RS (2007) Modeling the sub-cellular signaling pathways involved in reinforcement learning at the striatum. Progr Brain Res 168: 193–206

    Article  Google Scholar 

  • Wanjerkhede SM, Bapi RS (2009) A computational study of pre-synaptic re-uptake of dopamine on phosphorylation of darpp-32. In: Proceedings of international joint conference on neural networks, Atlanta, GA, pp 3303–3310

  • Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3(2): 383–398

    PubMed  CAS  Google Scholar 

  • Worthington Biochemical Corporation (1972) Introduction to enzymes. In: Manual of clinical enzyme measurements. Worthington Biochemical Corporation, Freehold, NJ. http://www.worthington-biochem.com/introbiochem/default.html

  • Yung KKL, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65: 709–730

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shesharao M. Wanjerkhede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanjerkhede, S.M., Bapi, R.S. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways. Biol Cybern 104, 397–424 (2011). https://doi.org/10.1007/s00422-011-0439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0439-5

Keywords

Navigation