Skip to main content

Advertisement

Log in

A model for altered neural network dynamics related to prehension movements in Parkinson disease

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we present a neural network model of the interactions between cortex and the basal ganglia during prehensile movements. Computational neuroscience methods are used to explore the hypothesis that the altered kinematic patterns observed in Parkinson’s disease patients performing prehensile movements is mainly due to an altered neuronal activity located in the networks of cholinergic (ACh) interneurons of the striatum. These striatal cells, under a strong influence of the dopaminergic system, significantly contribute to the neural processing within the striatum and in the cortico-basal ganglia loops. In order to test this hypothesis, a large-scale model of neural interactions in the basal ganglia has been integrated with previous models accounting for the cortical organization of goal directed reaching and grasping movements in normal and perturbed conditions. We carry out a discussion of the model hypothesis validation by providing a control engineering analysis and by comparing results of real experiments with our simulation results in conditions resembling these original experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostino R, Berardelli A, Curra A, Accornero N, Manfredi M (1998) Clinical impairment of sequential finger movements in Parkinson’s disease. Mov Disord 13: 418–421

    Article  CAS  PubMed  Google Scholar 

  • Alberts JL, Saling M, Adler CH, Stelmach GE (2000) Disruptions in the reach to grasp actions of Parkinson’s patients. Exp Brain Res 134: 353–362

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architechture of basal ganglia circuits: neural substrates for parallel processing. Trends Neurosci 13: 266–271

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, De Long MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res 85: 119–146

    Article  CAS  PubMed  Google Scholar 

  • Aosaki T (1995) Role of tonically active neurons of the primate’s striatum on the adaptive motor control. RIKEN Rev 9: 17–18

    Google Scholar 

  • Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology; Sect. 1. The nervous system. American Physiological Society , Bethesda, pp 1449–480

  • Bar-Gad I, Bergman H (2001) Stepping out the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurol 11: 689–695

    Article  CAS  Google Scholar 

  • Bares M, Kanovský P, Klajblová H, Rektor I (2003) Intracortical inhibition and facilitation are impaired in patients with early Parkinson’s disease: a paired TMS study. Eur J Neurol 10(4): 385–389

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21: 32–38

    Article  CAS  PubMed  Google Scholar 

  • Blázquez PM, Fujii N, Kojima J, Graybiel AM (2002) A network representation of response probability in the striatum. Neuron 33: 973–983

    Article  PubMed  Google Scholar 

  • Bonfiglioli C, De Berti G, Nichelli P, Nicolletti R, Castiello U (1998) Kinematic analysis of reach of reach to grasp movement in Parkinson’s and Huntington’s disease subjects. Neuropsychol 36: 1203–1238

    Article  CAS  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy trade-offs during trajectory formation. Psychol Rev 95: 49–90

    Article  CAS  PubMed  Google Scholar 

  • Bullock D, Cisek PE, Grossberg S (1998) Cortical networks for control of voluntary arm movements under variable force conditions. Cereb Cortex 8: 48–62

    Article  CAS  PubMed  Google Scholar 

  • Buhmann C, Gorsler A, Bäumer T, Hidding U, Demiralay C, Hinkelmann K, Weiller C, Siebner HR, Münchau A (2004) Abnormal excitability of premotor–motor connections in de novo Parkinson’s disease. Brain 127(Pt 12): 2732–46

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K (2008) Cortico-basal ganglia-cortical circuitry in Parkinson’s disease. Exp Neurol 212(1): 226–229

    Article  PubMed  Google Scholar 

  • Chesselet MF, Delfs JM (1996) Basal ganglia and movement disorders: an update. Trends Neurosci 19: 417–422

    CAS  PubMed  Google Scholar 

  • Castiello U, Stelmach GE, Lieberman A (1993) Temporal dissociation of the prehension pattern in Parkinson’s disease. Neuropsychol 31: 395–402

    Article  CAS  Google Scholar 

  • Castiello U, Bennet MB, Scarpa M (1994) The reach to grasp movement of Parkinson’s disease subjects. In: Bennet MB, Castiello U (eds) Insight into the reach to grasp movement. Elsevier, Amsterdam, pp 215–237

    Google Scholar 

  • Castiello U, Bennet MB (1997) The bilateral reach to grasp movement of Parkinson’s disease subjects. Brain 120: 593–604

    Article  PubMed  Google Scholar 

  • Castiello U, Bennett K, Bonfiglioli C, Lim S, Peppard RF (1999) The reach to grasp movement in Parkinson’s disease: response to simultaneous perturbation of object position and object size. Exp Brain Res 125: 453–462

    Article  CAS  PubMed  Google Scholar 

  • Castiello U, Bennet MB, Bonfiglioli C, Peppard RF (2000) The reach to grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychol 38: 46–59

    Article  CAS  Google Scholar 

  • Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol Cybern 73: 467–476

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Vidal JL, Poluha P, Teulings HL, Stelmach GE (1998) Neural dynamics of short and medium term motor control effects of levodopa therapy in Parkinson’s disease. Artif Intell Med 13: 57–79

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Vidal JL (1999) The gating functions of the basal ganglia in movement control. Prog Brain Res 121: 261–276

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Vidal JL, Ulloa-Perez A, Lopez-Coronado JL (2001) Neural dynamics of hand pre-shaping during prehension. Proc IEEE Syst Man Cybern 5: 3019–3024

    Google Scholar 

  • Cordo P, Schieppati M, Bevan L, Carlton LG, Carlton MJ (1993) Central and peripheral coordination in movement sequences. Psychol Res 55: 124–130

    Article  CAS  PubMed  Google Scholar 

  • Cutsuridis V, Perantonis S (2006) A neural network model of Parkinson’s disease bradykinesia. Neural Netw 19: 354–374

    Article  PubMed  Google Scholar 

  • Delfs JM, Ciaramitaro VM, Parry TM, Chesselet MF (1995) Subthalamic nucleus lesions: widespread effects on changes in gene expression induced by nigrostriatal dopamine dpletion in rats. J Neurosci 15: 6562–6575

    CAS  PubMed  Google Scholar 

  • Fink JS (1993) Neurobiology of basal ganglia receptors. Clin Neurosci 1: 27–35

    Google Scholar 

  • Gentilucci M, Negrotti A (1999) The control of an action in Parkinson’s disease. Exp Brain Res 129: 269–277

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Aosaki T, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265: 1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Hassani OK, Mouroux M, Feger J (1996) Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of desinhibition via the globus pallidus. Neuroscience 72: 105–115

    Article  CAS  PubMed  Google Scholar 

  • Herrerro MT, Augood SJ, Asensi H, Hirsch EC, Agid Y, Obeso JA, Emson PC (1996) Effects of L-dopa therapy on dopamine D2 receptor messenger RNA expression in the striatum of MPTP-intoxicated parkinsonian monkeys. Mol Brain Res 75: 389–396

    Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17: 427–422

    CAS  PubMed  Google Scholar 

  • Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8: 1491–1493

    Article  CAS  PubMed  Google Scholar 

  • Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3: 79–87

    Article  Google Scholar 

  • Jacobs RA, Jordan MI (1993) Learning piecewise control strategies in a modular neural network architecture. IEEE Trans Syst Man Cybern 23: 337–345

    Article  Google Scholar 

  • Jackson SR, Jackson GM, Harrison J, Henderson L., Kennard C (1995) The internal control of action and Parkinsons disease: a kinematic analysis of visually-guided and memory-guided prehension movements. Exp Brain Res 105: 147–162

    Article  CAS  PubMed  Google Scholar 

  • Jaeger D, Kita H, Wilson CJ (1994) Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J Neurophysiol 72: 1–4

    Google Scholar 

  • Jeannerod M (1984) The timing of natural prehension movements. J Mot Behav 16: 235–254

    CAS  PubMed  Google Scholar 

  • Johnson AE, Coirini H, Kaalstrom L, Wiesel FA (1994) Characterization of dopamine receptor binding sites in the subthalamic nucleus. NeuroReport 5: 1836–1838

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Matsumoto N, Okahashi K, Ueda Y, Satoh T, Minamimoto T, Sakamoto M, Yamada H (2003) Goal-directed, serial and synchronous activation of neurons in primate striatum. NeuroReport 14: 799–802

    Article  PubMed  Google Scholar 

  • Koós TZ, Tepper JM (1999) Monosynaptic inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2: 467–472

    Article  PubMed  Google Scholar 

  • Koós T, Tepper JM (2002) Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci 22: 529–535

    PubMed  Google Scholar 

  • Kreiss DS, Anderson LA, Walters JR (1996) Apomorphine and dopamine D1 receptor agonists increase the firing rates of subthalamic nucleus neurons. Neuroscience 72: 863–876

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Hazrati LM, Herrero MT, Vila M, Hassani OK, Mouroux M, Ruberg M, Asensi H, Agid Y, Feger J, Obeso JA, Parent A, Hirsh EC (1996) Re-evaluation of the functional anatomy of the basal ganglia in normal and parkinsonian states. Neurosci 76: 335–343

    Article  Google Scholar 

  • Marteniuk RG, Leavitt JL, MacKenzie CL, Athenes S (1990) Functional relationships between grasp and transport components in a prehension task. Human Mov Sci 9: 149–176

    Article  Google Scholar 

  • Morris G, Nevet A, Bergman H (2003) Anatomical funneling, sparse connectivity and redundancy reduction in the neural networks of the basal ganglia. J Physiol 97: 581–589

    Google Scholar 

  • Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537(1–2): 54–68

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal hyperdirect pathway. Neurosci Res 43: 111–117

    Article  PubMed  Google Scholar 

  • Nisembaum KL, Kitai ST, Crowley WR, Gerfen CR (1994) Temporal dissociation between changes in striatal enkephalin and substance P messenger RNAs following striatal dopamine depletion. Neuroscience 60: 927–937

    Article  Google Scholar 

  • Parent A, Lavoie B (1993) Dopaminergic innervation of the basal ganglia in normal and parkinsonian monkeys. In: Schneider JS, Gupta M (eds) Current’s concepts in Parkinson’s disease research. Hans Ruber, Toronto, pp 403–414

    Google Scholar 

  • Pessiglione M, Guehl D, Rolland AS, François C, Hirsch EC, Féger J, Tremblay L (2005) Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional segregation within basal ganglia circuits. J Neurosci 25: 1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Rudow G, O’Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, Marsh L, Dawson TM, Crain BJ, West MJ, Troncoso JC (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115(4): 461–70

    Article  PubMed  Google Scholar 

  • Santello M, Soechting JF (1998) Gradual molding of the hand to object contours. J Neurophysiol 79: 1307–1320

    CAS  PubMed  Google Scholar 

  • Scarpa M, Castiello U (1994) Perturbation of a prehension movement in Parkinson’s disease. Mov Disord 9: 415–425

    Article  CAS  PubMed  Google Scholar 

  • Schettino L, Rajaraman V, Jack D, Adamovich S, Sage J, Poizner H (2003) Deficits in the evolution of hand preshaping in Parkinson’s disease. Neuropsychology 42: 82–94

    Google Scholar 

  • Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27: 662–669

    Article  CAS  PubMed  Google Scholar 

  • Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88: 1263–1269

    PubMed  Google Scholar 

  • Ulloa A, Bullock D (2003) A neural network simulating human reach-grasp coordination by continuous updating of vector positioning commands. Neural Netw 16: 1141–1160

    Article  PubMed  Google Scholar 

  • Vila M, Levy R, Herrero MT, Ruberg M, Faucheux BA, Obeso JA, Agid Y, Hirsch EC (1997) Consequences of nigrosriatal denervation on the functioning of basal ganglia in human and non-human primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 17: 765–773

    CAS  PubMed  Google Scholar 

  • Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J Comp Neurol 194: 599–615

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Molina-Vilaplana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Vilaplana, J., Contreras-Vidal, J.L., Herrero-Ezquerro, M.T. et al. A model for altered neural network dynamics related to prehension movements in Parkinson disease. Biol Cybern 100, 271–287 (2009). https://doi.org/10.1007/s00422-009-0296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0296-7

Keywords

Navigation