Skip to main content

A Cortico-Basal Ganglia Model to Understand the Neural Dynamics of Targeted Reaching in Normal and Parkinson’s Conditions

  • Chapter
  • First Online:
Computational Neuroscience Models of the Basal Ganglia

Abstract

We present a cortico-basal ganglia model to study the neural mechanisms behind reaching movements in normal and in Parkinson’s disease conditions. The model consists of the following components: a two-joint arm model (AM), a layer of motor neurons in the spinal cord (MN), the proprioceptive cortex (PC), the motor cortex (MC), the prefrontal cortex (PFC), and the basal ganglia (BG). The model thus has an outer sensory-motor cortical loop and an inner cortico-basal ganglia loop to drive learning of reaching behavior. Sensory and motor maps are formed by the PC and MC which represent the space of arm configurations. The BG sends control signals to the MC following a stochastic gradient ascent policy applied to the value function defined over the arm configuration space. The trainable connections from PFC to MC can directly activate the motor cortex, thereby producing rapid movement avoiding the slow search conducted by the BG. The model captures the two main stages of motor learning, i.e., slow movements dominated by the BG during early stages and cortically driven fast movements with smoother trajectories at later stages. The model explains PD performance in stationary and pursuit reaching tasks. The model also shows that PD symptoms like tremor and rigidity could be attributed to synchronized oscillations in STN–GPe. The model is in line with closed-loop control and with neural representations for all the nuclei which explains Parkinsonian reaching. By virtue of its ability to capture the role of cortico-basal ganglia systems in controlling a wide range of features of reaching, the proposed model can potentially serve as a benchmark to test various motor pathologies of the BG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1991). Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146.

    Article  Google Scholar 

  • Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215.

    Article  Google Scholar 

  • Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507–512.

    Article  Google Scholar 

  • Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Frontiers in Computational Neuroscience, 8, 47.

    Article  Google Scholar 

  • Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.

    Article  Google Scholar 

  • Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders.

    Google Scholar 

  • Castiello, U., Bennett, K., Bonfiglioli, C., & Peppard, R. (2000). The reach-to-grasp movement in Parkinson’s disease before and after dopaminergic medication. Neuropsychologia, 38(1), 46–59.

    Article  Google Scholar 

  • Chakravarthy, V. S. (2013). Do basal Ganglia amplify willed action by stochastic resonance? A model. PloS one, 8(11), e75657.

    Article  Google Scholar 

  • Chakravarthy, V. S., & Balasubramani, P. P. (2015). Basal ganglia system as an engine for exploration. Encyclopedia of Computational Neuroscience, 315–327.

    Google Scholar 

  • Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological cybernetics, 103(3), 237–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Y., & Reggia, J. A. (1996). Alignment of coexisting cortical maps in a motor control model. Neural Computation, 8(4), 731–755.

    Article  Google Scholar 

  • Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7), 961–974.

    Article  Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381.

    Article  Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., & Massey, J. T. (1981). Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. Journal of Neurophysiology, 46(4), 725–743.

    Article  Google Scholar 

  • Gupta, A., Balasubramani, P. P., & Chakravarthy, S. (2013). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in computational neuroscience, 7, 172.

    Article  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

    Article  Google Scholar 

  • Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.

    Article  Google Scholar 

  • Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.

    Article  Google Scholar 

  • Izawa, J., Kondo, T., & Ito, K. (2004). Biological arm motion through reinforcement learning. Biological Cybernetics, 91(1), 10–22.

    Article  MATH  Google Scholar 

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry, 79(4), 368–376.

    Article  Google Scholar 

  • Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.

    Article  Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719.

    Article  Google Scholar 

  • Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.

    Article  Google Scholar 

  • Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244–247.

    Article  Google Scholar 

  • Magdoom, K., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S.-I., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.

    Article  MATH  Google Scholar 

  • Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755–766.

    Article  Google Scholar 

  • Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.

    Article  Google Scholar 

  • Matsumoto, K., Suzuki, W., & Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science, 301(5630), 229–232.

    Article  Google Scholar 

  • Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227.

    Article  Google Scholar 

  • Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2013). A computational model of altered gait patterns in Parkinson’s disease patients negotiating narrow doorways. Frontiers in Computational Neuroscience, 7.

    Google Scholar 

  • Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.

    Article  Google Scholar 

  • Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433(7028), 873–876.

    Article  Google Scholar 

  • Plamondon, R. (1998). A kinematic theory of rapid human movements: Part III. Kinetic outcomes. Biological Cybernetics, 78(2), 133–145.

    Article  MATH  Google Scholar 

  • Pouget, S. D. A., & Latham, P. (1999). Divisive normalization, line attractor networks and ideal observers. Paper presented at the Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference.

    Google Scholar 

  • Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.

    Article  Google Scholar 

  • Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.

    Article  Google Scholar 

  • Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain, 120(8), 1325–1337.

    Article  Google Scholar 

  • Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.

    Article  Google Scholar 

  • Trappenberg, T. (2003). Continuous attractor neural networks. In Recent developments in biologically inspired computing (pp. 398–425).

    Google Scholar 

  • Weinberger, M., Hutchison, W. D., & Dostrovsky, J. O. (2009). Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Experimental Neurology, 219(1), 58–61.

    Article  Google Scholar 

  • Zaidel, A., Spivak, A., Grieb, B., Bergman, H., & Israel, Z. (2010). Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain, awq144.

    Google Scholar 

  • Ziemann, U., Tergau, F., Bruns, D., Baudewig, J., & Paulus, W. (1997). Changes in human motor cortex excitability induced by dopaminergic and anti-dopaminergic drugs. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control, 105(6), 430–437.

    Google Scholar 

Download references

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muralidharan, V., Mandali, A., Balasubramani, P.P., Mehta, H., Srinivasa Chakravarthy, V., Jahanshahi, M. (2018). A Cortico-Basal Ganglia Model to Understand the Neural Dynamics of Targeted Reaching in Normal and Parkinson’s Conditions. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics