Skip to main content
Log in

Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2012

Abstract

Behavioural and electrophysiological experiments suggest that blowflies employ an active saccadic strategy of flight and gaze control to separate the rotational from the translational optic flow components. As a consequence, this allows motion sensitive neurons to encode during translatory intersaccadic phases of locomotion information about the spatial layout of the environment. So far, it has not been clear whether and how a motor controller could decode the responses of these neurons to prevent a blowfly from colliding with obstacles. Here we propose a simple model of the blowfly visual course control system, named cyberfly, and investigate its performance and limitations. The sensory input module of the cyberfly emulates a pair of output neurons subserving the two eyes of the blowfly visual motion pathway. We analyse two sensory-motor interfaces (SMI). An SMI coupling the differential signal of the sensory neurons proportionally to the yaw rotation fails to avoid obstacles. A more plausible SMI is based on a saccadic controller. Even with sideward drift after saccades as is characteristic of real blowflies, the cyberfly is able to successfully avoid collisions with obstacles. The relative distance information contained in the optic flow during translatory movements between saccades is provided to the SMI by the responses of the visual output neurons. An obvious limitation of this simple mechanism is its strong dependence on the textural properties of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender JA, Dickinson MH (2006) Visual stimulation of saccades in magnetically tethered Drosophila. J Exp Biol 209: 3170–182

    Article  PubMed  Google Scholar 

  • Boeddeker N, Egelhaaf M (2003) Steering a virtual blowfly: simulation of visual pursuit. Proc R Soc Lond B 270: 1971–978

    Article  Google Scholar 

  • Boeddeker N, Kern R, Egelhaaf M (2003) Chasing a dummy target: smooth pursuit and velocity control in male blowflies. Proc R Soc Lond B 270: 393–99

    Article  Google Scholar 

  • Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J (2005) Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths. J Comp Physiol A 25: 6435–448

    Google Scholar 

  • Borst A (2004) Modelling fly motion vision. In: Feng J(eds) Computation neuroscience: a comprehensive approach. Chapman & Hall/CTC, London, pp 397–29

    Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2: 5–8

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188: 419–37

    Article  CAS  Google Scholar 

  • Borst A, Reisenman C, Haag J (2003) Adaptation to response transients in fly motion vision: II. Model Stud Vis Res 43: 1309–322

    Google Scholar 

  • Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA(eds) Photoreception and vision in invertebrates. Plenum Press, New York, pp 561–21

    Google Scholar 

  • Chahl JS, Srinivasan M (2000) A complete panoramic vision system, incorporating imaging, ranging, and three dimensional navigation. In: Proceedings of the IEEE Workshop on Omnidirectional Vision, pp 104–11

  • Dahmen HJ, Wüst RM, Zeil J (1997) Extracting egomotion parameters from optic flow: principal limits for animals and machines. In: Srinivasan MV, Venkatesh S(eds) From living eyes to seeing machines. Oxford University Press, Oxford, pp 174–98

    Google Scholar 

  • Dror RO, O’Carroll DC, Laughlin SB (2001) Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Am A 18: 241–52

    Article  CAS  Google Scholar 

  • Eckert H, Hamdorf K (1981) The contrast frequency-dependence: a criterion for judgung the non-participation of neurones in the control of behavioural responses. J Comp Physiol A 145: 241–47

    Article  Google Scholar 

  • Egelhaaf M (2006) The neural computation of visual motion information. In: Warrant E, Nilsson D-E(eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 399–61

    Google Scholar 

  • Franceschini N, Pichon JM, Blanes C (1992) From insect vision to robot vision. Phil Trans R Soc Lond B 337: 283–94

    Article  Google Scholar 

  • Franz MO, Chahl JS, Krapp HG (2004) Insect-inspired estimation of egomotion. Neural Comput 16: 2245–260

    Article  PubMed  Google Scholar 

  • Franz MO, Mallot HA (2000) Biomimetic robot navigation. Robot Auton Syst 133–53

  • Frye MA, Dickinson MH (2007) Visual edge orientation shapes free-flight behavior in drosophila. Fly 1: e1-e2

    Google Scholar 

  • Götz KG (1975) The optomotor equilibrium of the Drosophila navigation system. J Comp Physiol 99: 187–10

    Article  Google Scholar 

  • Harrison RR, Koch C (1999) A robust analog VLSI motion sensor based on the visual system of the fly. Auton Robot 7: 211–24

    Article  Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45: 143–56

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46: 67–9

    Article  Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour. In: Ali MA(eds) Photoreception and vision in invertebrates. Plenum Press, New York, pp 523–59

    Google Scholar 

  • Hausen K (1993) Decoding of retinal image flow in insects. In: Miles FA, Wallman J(eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 203–35

    Google Scholar 

  • James AC (1990) White-noise studies in the fly lamina. Ph.D. Thesis, Australian National University, Canberra

  • Juusola M, Uusitalo RO, Weckström M (1995) Transfer of graded potentials at the photoreceptor-interneuron synapse. J Gen Physiol 103: 117–48

    Article  Google Scholar 

  • Karmeier K, Krapp HG, Egelhaaf M (2005) Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. J Neurophysiol 94: 2182–194

    Article  PubMed  Google Scholar 

  • Karmeier K, van Hateren JH, Kern R, Egelhaaf M (2006) Encoding of naturalistic optic flow by a population of blowfly motion sensitive neurons. J Neurophysiol 96: 1602–614

    Article  CAS  PubMed  Google Scholar 

  • Kern R, Lutterklas M, Egelhaaf M (2000) Neural representation of optic flow experienced by unilaterally blinded flies on their mean walking trajectories. J Comp Physiol A 186: 467–79

    Article  CAS  PubMed  Google Scholar 

  • Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M (2001) Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network-Comp Neural 12: 351–69

    CAS  Google Scholar 

  • Kern R, van Hateren JH, Egelhaaf M (2006) Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements. J Exp Biol 209: 1251–260

    Article  CAS  PubMed  Google Scholar 

  • Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M (2005) Function of a fly motion-sensitive neuron matches eye movements during free flight. PLOS Biol 3: 1130–138

    Article  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56: 247–54

    Article  CAS  PubMed  Google Scholar 

  • Kral K, Vernik M, Devetak D (2000) The visually controlled prey-capture behaviour of the European Mantisped Mantispa stryriaca. J Exp Biol 203: 2117–123

    CAS  PubMed  Google Scholar 

  • Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. In: Lappe M(eds) Neuronal processing of optic flow. Academic Press, New York, pp 93–20

    Google Scholar 

  • Krapp HG, Hengstenberg R, Egelhaaf M (2001) Binocular contributions to optic flow processing in the fly visual system. J Neurophysiol 85: 724–34

    CAS  PubMed  Google Scholar 

  • Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M (2003) FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vis Res 43: 779–91

    Article  CAS  PubMed  Google Scholar 

  • Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M (2005) On the computations analysing natural optic flow: quantitative model analysis of the blowfly motion vision pathway. J Neurosci 25: 6435–448

    Article  CAS  PubMed  Google Scholar 

  • Neumann TR (2004) Biomimetic spherical vision. Ph.D. Thesis, Universität Tübingen

  • Reiser MB, Dickinson MH (2003) A test bed for insect-inspired robotic control. Phil Trans R Soc Lond A 361: 2267–285

    Article  Google Scholar 

  • Schenato L, Deng X, Wu WC (2001) Virtual insect flight simulator (VIFS): a software testbed for insect flight. In: IEEE Int Conf Robotics and Automation, pp 3885–892

  • Schilstra C, van Hateren JH (1998) Stabilizing gaze in flying blowflies. Nature 395: 654–54

    Article  CAS  PubMed  Google Scholar 

  • Schilstra C, van Hateren JH (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J Exp Biol 202: 1481–1490

    PubMed  Google Scholar 

  • Sobel EC (1990) The locust’s use of motion parallax to measure distance. J Comp Physiol A 167: 579–88

    Article  CAS  PubMed  Google Scholar 

  • Sobey PJ (1994) Active navigation with a monocular robot. Biol Cybern 71: 433–40

    Article  Google Scholar 

  • Srinivasan MV, Zhang SW, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199: 237–44

    PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW (2000) Visual navigation in flying insects. Int Rev Neurobiol 44: 67–2

    Article  CAS  PubMed  Google Scholar 

  • Tammero LF, Dickinson MH (2002a) Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J Exp Biol 205: 2785–798

    PubMed  Google Scholar 

  • Tammero LF, Dickinson MH (2002b) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205: 327–43

    PubMed  Google Scholar 

  • van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M (2005) Function and coding in the blowfly H1 neuron during naturalistic optic flow. J Neurosci 25: 4343–352

    Article  PubMed  Google Scholar 

  • van Hateren JH, Schilstra C (1999) Blowfly flight and optic flow. II. Head movements during flight. J Exp Biol 202: 1491–500

    PubMed  Google Scholar 

  • Warzecha A-K, Egelhaaf M (1996) Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil Trans Roy Soc Lond, B 351: 1579–591

    Article  Google Scholar 

  • Warzecha A-K, Egelhaaf M (2000) Response latency of a motion-sensitive neruon in the fly visual system: dependence on stimulus parameters and physiological conditions. Vis Res 40: 2973–983

    Article  CAS  PubMed  Google Scholar 

  • Warzecha A-K, Kretzberg J, Egelhaaf M (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr Biol 8: 359–68

    Article  CAS  PubMed  Google Scholar 

  • Webb B, Harrison RR, Willis MA (2004) Sensorimotor control of navigation in arthropod artifical systems. Arthrop Struct Develop 33: 301–29

    Article  Google Scholar 

  • Zufferey J-C, Floreano D (2006) Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans Robot 22: 137–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Peter Lindemann.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00422-012-0480-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindemann, J.P., Weiss, H., Möller, R. et al. Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biol Cybern 98, 213–227 (2008). https://doi.org/10.1007/s00422-007-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0205-x

Keywords

Navigation