Skip to main content
Log in

Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Anatomical and physiological auditory data and pitch measurements are presented including some additional analysis. The data provide the basis for a new computer model of sustained chopper neurons in the ventral cochlear nucleus. New and old evidence indicating a preference for multiples of 0.4 ms in oscillations of chopper neurons in the cochlear nucleus of different species such as man, cats, and Guinea fowls, is summarized. Our hypothesis is that the time constant of 0.4  ms is due to the minimum synaptic delay of chopper neuron connections. Anatomical findings show that chopper neurons are indeed connected and can excite each other; a model of a circular network of neurons that are connected via synapses with a delay of 0.4  ms is thus plausible. Results concerning frequency tuning and dynamical properties of periodicity encoding of chopper neurons are reviewed. It is concluded that chopper neurons receive input both from auditory nerve fibres and onset neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CN:

Cochlear nucleus

VCN:

Ventral cochlear nucleus

AVCN:

Anterior ventral cochlear nucleus

PVCN:

Posterior ventral cochlear nucleus

DCN:

Dorsal cochlear nucleus

IC:

Inferior colliculus

CF:

Characteristic frequency

CV:

Coefficient of variation

SPL:

Sound pressure level

PSTH:

Poststimulus time histogram

AM:

Amplitude modulated signal

SAM:

Sinusoidal amplitude modulated sine wave

EPSP:

Excitatory postsynaptic potentials

References

  • Adams JC (1983) Multipolar cells in the ventral cochlear nucleus project to the dorsal cochlear nucleus and the inferior colliculus. Neurosci Lett 37:205–208

    Article  PubMed  CAS  Google Scholar 

  • Arnesen AR, Osen KK (1978) The cochlear nerve in the cat: topography, cochleotopy and fiber spectrum. J Comp Neurol 178:661–678

    Article  PubMed  CAS  Google Scholar 

  • Banks MI, Sachs M (1991) Regularity analysis in a compartment model of chopper units in the anteroventral cochlear nucleus. J Neurophysiol 65:606–629

    PubMed  CAS  Google Scholar 

  • Blackburn C, Sachs M (1989) Classification of unit types in the anteroventral cochlear nucleus: PST histograms and regularity analysis. J Neurophysiol 62:1303–1329

    PubMed  CAS  Google Scholar 

  • Bourk TR (1976) Electrical responses of neuronal units in the anteroventral cochlear nucleus of the cat. PhD thesis, MIT

  • Caspary DM, Backoff PM, Finlayson PG, Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J Neurophysiol 72:2124–2133

    PubMed  CAS  Google Scholar 

  • Ferragamo M, Golding N, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79:51–63

    PubMed  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1985) Differential encoding of rapid changes in sound amplitude by second order auditory neurons. Exp Brain Res 60:417–422

    Article  PubMed  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122

    Article  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms. Hear Res 44:123–142

    CAS  Google Scholar 

  • Glass L (2001) Synchronization and rhythmic processes in physiology. Nature 410:277–284

    Article  PubMed  CAS  Google Scholar 

  • Hackett JT, Jackson H, Rubel EW (1982) Synaptic excitation of the second and third order auditory neurons in the avian brain stem. Neuroscience 7:1455–1469

    Article  PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R, Shakleton TM (1992) A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91:2096–2109

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pitch analysis in the time domain. Exp Brain Res 52:333–355

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Schreiner C (1988) Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms. J Neurophysiol 60:1799–1822

    CAS  Google Scholar 

  • Li RYS, Guinan JJ (1971) Antidromic and orthodromic stimulation of neurons receiving calyces of held. MIT Q Rpt 100:227–234

    Google Scholar 

  • Oertel D, Wu SH, Garb MW, Dizack C (1990) Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. J Comp Neurol 295:136–154

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484

    Article  PubMed  CAS  Google Scholar 

  • Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties. J Comp Neurol 346:19–42

    Article  PubMed  CAS  Google Scholar 

  • Palmer A, Jiang D, Marshall DH (1996) Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth. J Neurophysiol 75:780–794

    PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1966) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1:220–235

    Article  PubMed  CAS  Google Scholar 

  • Rees A, Langner G (2005) The inferior colliculus. Temporal coding in the auditory midbrain, Springer, Berlin Heidelberg New York pp 346–376

  • Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56:261–286

    PubMed  CAS  Google Scholar 

  • Schouten JF (1970) The residue revisited. In: Plomp R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing, Sijthoff AW, Leiden, pp 41–53

  • Singer W (1998) Consciousness and the structure of neuronal representations. Philos Trans R Soc Lond B Biol Sci 353:1829–1840

    Article  PubMed  CAS  Google Scholar 

  • Taschenberger H, Gersdorff H (2000) Fine tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20:9162–9173

    PubMed  CAS  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115:1207–1218

    Article  PubMed  Google Scholar 

  • Wiegrebe L, Winter IM (2001) Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus. J Neurophysiol 85:1206–1219

    PubMed  CAS  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate–intensity functions in guinea pig auditory nerve fibres. Hear Res 45:191–202

    Article  PubMed  CAS  Google Scholar 

  • Winter IM, Wiegrebe L, Patterson RD (2001) The temporal representation of the delay of iterated rippled noise in the ventral cochlear nucleus of the guinea-pig. J Physiol 537:553–566

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Robert JM, Shofner WP (1988) Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 60:1–29

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bahmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahmer, A., Langner, G. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm. Biol Cybern 95, 371–379 (2006). https://doi.org/10.1007/s00422-006-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0092-6

Keywords

Navigation