Skip to main content

Advertisement

Log in

Carbohydrate supplementation: a critical review of recent innovations

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability.

Methods

Narrative review.

Results

Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown.

Conclusions

In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

βHB:

Beta hydroxybutyrate

CHO:

Carbohydrate

CHO + PRO:

Combined carbohydrate and protein solutions

FFA:

Free fatty acid

FMC:

Fast-absorbing modified carbohydrate or starch

GLUT5:

Intestinal fructose transporter

HGEL:

Carbohydrate hydrogel solution

IFABP:

Intestinal fatty acid-binding protein

L:R:

Lactulose to rhamnose ratio

MC:

Modified carbohydrate or starch

MCT:

Medium-chain triglycerid

MTC:

Multiple transportable carbohydrate

RER:

Respiratory exchange ratio

RM:

Repetition maximum

SGLT1:

Sodium-dependent glucose transporter 1

SMC:

Slow-absorbing modified carbohydrate or starch

T1D:

Type 1 diabetes

TTE:

Time to exhaustion

TT:

Time trial

VO2max :

Maximal oxygen consumption

VO2peak :

Peak oxygen consumption

W max :

Peak power output

References

  • Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jéquier E (1988) Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr 48:240–247

    CAS  PubMed  Google Scholar 

  • Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND (2012) Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab 37:276–283

    CAS  PubMed  Google Scholar 

  • Adopo E, Péronnet F, Massicotte D, Brisson GR, Hillaire-Marcel C (1994) Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. J Appl Physiol 76:1014–1019

    CAS  PubMed  Google Scholar 

  • Aguiar AS, Speck AE, Canas PM, Cunha RA (2020) Neuronal adenosine A2A receptors signal ergogenic effects of caffeine. Sci Rep 10:13414

    PubMed  PubMed Central  Google Scholar 

  • Alghannam AF (2011) Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise. Appl Physiol Nutr Metab 36:748–757

    CAS  PubMed  Google Scholar 

  • Alghannam AF, Gonzalez JT, Betts JA (2018) Restoration of muscle glycogen and functional capacity: role of post-exercise carbohydrate and protein co-ingestion. Nutrients 10:253

    PubMed Central  Google Scholar 

  • Arkinstall MJ, Tunstall RJ, Cameron-Smith D, Hawley JA (2004) Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation. Am J Physiol Endocrinol Metab 287:E25-31

    CAS  PubMed  Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P, Bolinder J (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 85:893–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31:2

    Google Scholar 

  • Aulin KP, Söderlund K, Hultman E (2000) Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol 81:346–351

    Google Scholar 

  • Bally L, Kempf P, Zueger T, Speck C, Pasi N, Ciller C, Feller K, Loher H, Rosset R, Wilhelm M, Boesch C, Buehler T, Dokumaci AS, Tappy L, Stettler C (2017) Metabolic effects of glucose-fructose co-ingestion compared to glucose alone during exercise in type 1 diabetes. Nutrients 9:164

    PubMed Central  Google Scholar 

  • Barber JFP, Thomas J, Narang B, Hengist A, Betts JA, Wallis GA, Gonzalez JT (2020) Pectin-alginate does not further enhance exogenous carbohydrate oxidation in running. Med Sci Sport Exerc 52:1376–1384

    CAS  Google Scholar 

  • Baur DA, Schroer A, Luden N, Womack C, Smyth S, Saunders M (2014) Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sport Exerc 46:1778–1786

    CAS  Google Scholar 

  • Baur DA, Vargas FCS, Bach CW, Garvey JA, Ormsbee MJ (2016) Slow-absorbing modified starch before and during prolonged cycling increases fat oxidation and gastrointestinal distress without changing performance. Nutrients 8:E392

    PubMed  Google Scholar 

  • Baur DA, Willingham BD, Smith KA, Kisiolek JN, Morrissey MC, Saracino PG, Ragland TJ, Ormsbee MJ (2018) Adipose lipolysis unchanged by preexercise carbohydrate regardless of glycemic index. Med Sci Sports Exerc 50:827–836

    CAS  PubMed  Google Scholar 

  • Baur DA, Toney HR, Saunders MJ, Baur KG, Luden ND, Womack CJ (2019) Carbohydrate hydrogel beverage provides no additional cycling performance benefit versus carbohydrate alone. Eur J Appl Physiol 119:2599–2608

    PubMed  Google Scholar 

  • Beals JW, Binns SE, Davis JL, Giordano GR, Klochak AL, Paris HL, Schweder MM, Peltonen GL, Scalzo RL, Bell C (2017) Concurrent beet juice and carbohydrate ingestion: influence on glucose tolerance in obese and nonobese adults. J Nutr Metab 2017:6436783

    PubMed  PubMed Central  Google Scholar 

  • Beaven CM, Maulder P, Pooley A, Kilduff L, Cook C (2013) Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab 38:633–637

    CAS  PubMed  Google Scholar 

  • Beckers E, Jeukendrup A, Brouns F, Wagenmakers A, Saris W (1992) Gastric emptying of carbohydrate—medium chain triglyceride suspensions at rest. Int J Sport Med 13:581–584

    CAS  Google Scholar 

  • Beelen M, Van Kranenburg J, Senden JM, Kuipers H, Van Loon LJC (2012) Impact of caffeine and protein on postexercise muscle glycogen synthesis. Med Sci Sports Exerc 44:692–700

    CAS  PubMed  Google Scholar 

  • Bell DG, McLellan TM (2002) Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol 93:1227–1234

    CAS  PubMed  Google Scholar 

  • Bell DG, McLellan TM (2003) Effect of repeated caffeine ingestion on repeated exhaustive exercise endurance. Med Sci Sport Exerc 35:1348–1354

    CAS  Google Scholar 

  • Berardi JM, Price TB, Noreen EE, Lemon PWR (2006) Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sport Exerc 38:1106–1113

    CAS  Google Scholar 

  • Berardi JM, Noreen EE, Lemon PW (2008) Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Int Soc Sport Nutr 5:24

    Google Scholar 

  • Bergstrom J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71:140–150

    CAS  PubMed  Google Scholar 

  • Betteridge S, Bescós R, Martorell M, Pons A, Garnham AP, Stathis CC, McConell GK (2016) No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J Appl Physiol 120:391–398

    CAS  PubMed  Google Scholar 

  • Betts JA, Stevenson E, Williams C, Sheppard C, Grey E, Griffin J (2005) Recovery of endurance running capacity: effect of carbohydrate-protein mixtures. Int J Sport Nutr Exerc Metab 15:590–609

    CAS  PubMed  Google Scholar 

  • Betts JA, Williams C, Boobis L, Tsintzas K (2008) Increased carbohydrate oxidation after ingesting carbohydrate with added protein. Med Sci Sport Exerc 40:903–912

    CAS  Google Scholar 

  • Blom PCS, Høstmark AT, Vaage O, Kardel KR, Mæhlum S (1987) Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis. Med Sci Sport Exerc 19:491–496

    CAS  Google Scholar 

  • Blomstrand E, Hassmen P, Ekblom B, Newsholme EA (1991) Administration of branched-chain amino acids during sustained exercise–effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol 63:83–88

    CAS  PubMed  Google Scholar 

  • Bracken RM, Page R, Gray B, Kilduff LP, West DJ, Stephens JW, Bain SC (2012) Isomaltulose improves glycemia and maintains run performance in type 1 diabetes. Med Sci Sport Exerc 44:800–808

    CAS  Google Scholar 

  • Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I (2009) Dietary glycemic index: health implications. J Am Coll Nutr 28(Suppl):446S-449S

    CAS  PubMed  Google Scholar 

  • Breen L, Tipton KD, Jeukendrup AE (2010) No effect of carbohydrate-protein on cycling performance and indices of recovery. Med Sci Sport Exerc 42:1140–1148

    CAS  Google Scholar 

  • Brener W, Hendrix TR, McHugh PR (1983) Regulation of the gastric emptying of glucose. Gastroenterology 85:76–82

    CAS  PubMed  Google Scholar 

  • Brynolf M, Sandstrom R, Stahl A (1995) Energy formulation. Pat No. EP0745096A1

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  Google Scholar 

  • Burke LM (2001) Nutritional practices of male and female endurance cyclists. Sport Med 31:521–532

    CAS  Google Scholar 

  • Burke LM (2008) Caffeine and sports performance. Appl Physiol Nutr Metab 33:1319–1334

    CAS  PubMed  Google Scholar 

  • Burke LM (2015) Re-Examining high-fat diets for sports performance: did we call the ‘nail in the coffin’ too soon? Sport Med 45:33–49

    Google Scholar 

  • Burke LM, Collier GR, Hargreaves M (1993) Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol 75:1019–1023

    CAS  PubMed  Google Scholar 

  • Burke LM, Claassen A, Hawley JA, Noakes TD (1998) Carbohydrate intake during prolonged cycling minimizes effect of glycemic index of preexercise meal. J Appl Physiol 85:2220–2226

    CAS  PubMed  Google Scholar 

  • Burke LM, Hawley JA, Angus DJ, Cox GR, Clark SA, Cummings NK, Desbrow B, Hargreaves M (2002) Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sport Exerc 34:83–91

    Google Scholar 

  • Burke LM, Kiens B, Ivy JL (2004) Carbohydrates and fat for training and recovery. J Sports Sci 22:15–30

    PubMed  Google Scholar 

  • Burke LM, Hawley JA, Wong SHS, Jeukendrup AE (2011) Carbohydrates for training and competition. J Sports Sci 29(Supp 1):S17-27

    PubMed  Google Scholar 

  • Burke LM, Ross ML, Garvican-Lewis LA, Welvaert M, Heikura IA, Forbes SG, Mirtschin JG, Cato LE, Strobel N, Sharma AP, Hawley JA (2017) Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol 595:2785–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke LM, Hawley JA, Jeukendrup A, Morton JP, Stellingwerff T, Maughan RJ (2018) Toward a common understanding of diet-exercise strategies to manipulate fuel availability for training and competition preparation in endurance sport. Int J Sport Nutr Exerc Metab 28:451–463

    PubMed  Google Scholar 

  • Burke LM, Sharma AP, Heikura IA, Forbes SF, Holloway M, McKay AKA, Bone JL, Leckey JJ, Welvaert M, Ross ML (2020) Crisis of confidence averted: Impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS ONE 15:e0234027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti S, Daria P, Sani G, Aromatario M (2015) Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 13:71–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AL, Staudacher HM, Cummings NK, Stepto NK, Nikolopoulos V, Burke LM, Hawley JA (2001) Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol 91:115–122

    CAS  PubMed  Google Scholar 

  • Carter JMM, Jeukendrup AEE, Mann CH, Jones DAA (2004) The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sport Exerc 36:2107–2111

    CAS  Google Scholar 

  • Cermak NM, Van Loon LJC (2013) The use of carbohydrates during exercise as an ergogenic aid. Sport Med 43:1139–1155

    Google Scholar 

  • Chambers ES, Bridge MW, Jones DA (2009) Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 587:1779–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Edinburgh RM, Hengist A, Smith HA, Walhin JP, Betts JA, Thompson D, Gonzalez JT (2018) Venous blood provides lower glucagon-like peptide-1 concentrations than arterialized blood in the postprandial but not the fasted state: consequences of sampling methods. Exp Physiol 103:1200–1205

    CAS  PubMed  Google Scholar 

  • Cheuvront SN, Iii RC, Kolka MA, Lieberman HR, Kellogg MD, Sawka MN (2004) Branched-chain amino acid supplementation and human performance when hypohydrated in the heat downloaded from. J Appl Physiol 97:1275–1282

    CAS  PubMed  Google Scholar 

  • Choi SM, Tucker DF, Gross DN, Easton RM, DiPilato LM, Dean AS, Monks BR, Birnbaum MJ (2010) Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway. Mol Cell Biol 30:5009–5020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke ND, Kirwan NA, Richardson DL (2019) Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients 11:2575

    CAS  PubMed Central  Google Scholar 

  • Cole M, Coleman D, Hopker J, Wiles J (2014) Improved gross efficiency during long duration submaximal cycling following a short-term high carbohydrate diet. Int J Sport Med 35:265–269

    CAS  Google Scholar 

  • Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D (2009) New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug. Eur J Pharm Biopharm 73:345–350

    CAS  PubMed  Google Scholar 

  • Conger SA, Warren GL, Hardy MA, Millard-Stafford ML (2011) Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sport Nutr Exerc Metab 21:71–84

    CAS  PubMed  Google Scholar 

  • Cooper R, Naclerio F, Allgrove J, Larumbe-Zabala E (2014) Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. Eur J Sport Sci 14:353–361

    PubMed  Google Scholar 

  • Correia CE, Bhattacharya K, Lee PJ, Shuster JJ, Theriaque DW, Shankar MN, Smit GPA, Weinstein DA (2008) Use of modified corn starch therapy to extend fasting in glycogen storage disease types Ia and Ib. Am J Clin Nutr 88:1272–1276

    CAS  PubMed  Google Scholar 

  • Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D (1977) Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 43:695–699

    CAS  PubMed  Google Scholar 

  • Costill DL, Dalsky GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sport Exerc 10:155–158

    CAS  Google Scholar 

  • Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Macrides TA, Martin DT, Moquin A, Roberts A, Hawley JA, Burke LM (2002) Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol 93:990–999

    PubMed  Google Scholar 

  • Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, Jeacocke N, Snow RJ, Yeo WK, Burke LM (2010) Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol 109:126–134

    CAS  PubMed  Google Scholar 

  • Cox PJ, Kirk T, Ashmore T, Willerton K, Evans R, Smith A, Murray AJ, Stubbs B, West J, McLure SW, King MT, Dodd MS, Holloway C, Neubauer S, Drawer S, Veech RL, Griffin JL, Clarke K (2016) Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab 24:256–268

    CAS  PubMed  Google Scholar 

  • Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61:165–172

    CAS  PubMed  Google Scholar 

  • Cunningham KM, Read NW (1989) The effect of incorporating fat into different components of a meal on gastric emptying and postprandial blood glucose and insulin responses. Br J Nutr 61:285–290

    CAS  PubMed  Google Scholar 

  • Cureton KJ, Warren GL, Millard-Stafford ML, Wingo JE, Trilk J, Buyckx M (2007) Caffeinated sports drink: ergogenic effects and possible mechanisms. Int J Sport Nutr Exerc Metab 17:35–55

    CAS  PubMed  Google Scholar 

  • Currell K, Jeukendrup AE (2008) Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sport Exerc 40:275–281

    CAS  Google Scholar 

  • D’Lugos AC, Luden ND, Faller JM, Akers JD, McKenzie AI, Saunders MJ (2016) Supplemental protein during heavy cycling training and recovery impacts skeletal muscle and heart rate responses but not performance. Nutrients 8:550

    PubMed Central  Google Scholar 

  • Dahlqvist A, Thomson DL (1963) The digestion and absorption of maltose and trehalose by the intact rat. Acta Physiol Scand 59:111–125

    CAS  PubMed  Google Scholar 

  • Davis J, Jackson D, Broadwell M, Queary JL, Lambert C (1997) Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. Int J Sport Nutr 7:261–273

    CAS  PubMed  Google Scholar 

  • Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA (2003) Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol 284:R399-404

    CAS  PubMed  Google Scholar 

  • De Bock K, Derave W, Ramaekers M, Richter EA, Hespel P (2007) Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. J Appl Physiol 102:183–188

    PubMed  Google Scholar 

  • de Oliveira EP, Burini RC, Jeukendrup A (2014) Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sport Med 44:79–85

    Google Scholar 

  • Dearlove DJ, Faull OK, Rolls E, Clarke K, Cox PJ (2019) Nutritional ketoacidosis during incremental exercise in healthy athletes. Front Physiol 10:290

    PubMed  PubMed Central  Google Scholar 

  • DeMarco HM, Sucher KP, Cisar CJ, Butterfield GE (1999) Pre-exercise carbohydrate meals: application of glycemic index. Med Sci Sport Exerc 31:164–170

    CAS  Google Scholar 

  • Desbrow B, Barrett CM, Minahan CL, Grant GD, Leveritt MD (2009) Caffeine, cycling performance, and exogenous CHO oxidation: a dose-response study. Med Sci Sports Exerc 41:1744–1751

    CAS  PubMed  Google Scholar 

  • Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2012) The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci 30:115–120

    PubMed  Google Scholar 

  • Devries MC (2016) Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol 101:243–249

    PubMed  Google Scholar 

  • Dohm G (1986) Protein as a fuel for endurance exercise. Exerc Sport Sci Rev 14:143–173

    CAS  PubMed  Google Scholar 

  • Douard V, Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295:E227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudar MD, Bode ED, Fishkin KR, Brown RA, Carre MM, Mills NR, Ormsbee MJ, Ives SJ (2020) Pre-sleep low glycemic index modified starch does not improve next-morning fuel selection or running performance in male and female endurance athletes. Nutrients 12:2888

    CAS  PubMed Central  Google Scholar 

  • Dyck DJ, Putman CT, Heigenhauser GJ, Hultman E, Spriet LL (1993) Regulation of fat-carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am J Physiol 265:E852–E859

    CAS  PubMed  Google Scholar 

  • Dyck DJ, Peters SJ, Wendling PS, Chesley A, Hultman E, Spriet LL (1996) Regulation of muscle glycogen phosphorylase activity during intense aerobic cycling with elevated FFA. Am J Physiol 270:E116–E125

    CAS  PubMed  Google Scholar 

  • Edinburgh RM, Hengist A, Smith HA, Betts JA, Thompson D, Walhin JP, Gonzalez JT (2017) Prior exercise alters the difference between arterialised and venous glycaemia: implications for blood sampling procedures. Br J Nutr 117:1414–1421

    CAS  PubMed  Google Scholar 

  • Enevoldsen LH, Simonsen L, Macdonald IA, Bülow J (2004) The combined effects of exercise and food intake on adipose tissue and splanchnic metabolism. J Physiol 561:871–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans M, Egan B (2018) Intermittent running and cognitive performance after ketone ester ingestion. Med Sci Sports Exerc 50:2330–2338

    CAS  PubMed  Google Scholar 

  • Evans M, McSwiney FT, Brady AJ, Egan B (2019) No benefit of ingestion of a ketone monoester supplement on 10-km running performance. Med Sci Sport Exerc 51:2506–2515

    CAS  Google Scholar 

  • Febbraio M, Keenan J, Angus D, Campbell S, Garnham A (2000) Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol 89:1845–1851

    CAS  PubMed  Google Scholar 

  • Ferguson SK, Hirai DM, Copp SW, Holdsworth CT, Allen JD, Jones AM, Musch TI, Poole DC (2013) Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J Physiol 591:547–557

    CAS  PubMed  Google Scholar 

  • Ferguson-Stegall L, McCleave EL, Ding Z, Kammer LM, Wang B, Doerner PG, Liu Y, Ivy JL (2010) The effect of a low carbohydrate beverage with added protein on cycling endurance performance in trained athletes. J Strength Cond Res 24:2577–2586

    PubMed  Google Scholar 

  • Ferguson-Stegall L, McCleave EL, Ding Z, Doerner PGI, Wang B, Liao Y-H, Kammer L, Liu Y, Hwang J, Dessard BM, Ivy JL (2011) Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signalling for protein synthesis. J Strength Cond Res 25:1210–1224

    PubMed  Google Scholar 

  • Fernández-García B, Pérez-Landaluce J, Rodríguez-Alonso M, Terrados N (2000) Intensity of exercise during road race pro-cycling competition. Med Sci Sport Exerc 32:1002–1006

    Google Scholar 

  • Fery F, Balasse EO (1983) Ketone body turnover during and after exercise in overnight-fasted and starved humans. Am J Physiol Endocrinol Metab 8:E318–E325

    Google Scholar 

  • Flood TR, Montanari S, Wicks M, Blanchard J, Sharpe H, Taylor L, Kuennen MR, Lee BJ (2020) Addition of pectin-alginate to a carbohydrate beverage does not maintain gastrointestinal barrier function during exercise in hot-humid conditions better than carbohydrate ingestion alone. Appl Physiol Nutr Metab 45:1145–1155

    PubMed  Google Scholar 

  • Flynn S, Rosales A, Hailes W, Ruby B (2020) Males and females exhibit similar muscle glycogen recovery with varied recovery food sources. Eur J Appl Physiol 120:1131–1142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs CJ, Gonzalez JT, van Loon LJC (2019) Fructose co-ingestion to increase carbohydrate availability in athletes. J Physiol 597:3549–3560

    CAS  PubMed  Google Scholar 

  • Gallen IW, Hume C, Lumb A (2011) Fuelling the athlete with type 1 diabetes. Diabetes Obes Metab 13:130–136

    CAS  PubMed  Google Scholar 

  • Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM (2009) Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res 23:315–324

    PubMed  Google Scholar 

  • Gejl KD, Thams LB, Hansen M, Rokkedal-Lausch T, Plomgaard P, Nybo L, Larsen FJ, Cardinale DA, Jensen K, Holmberg HC, Vissing K, Ørtenblad N (2017) No superior adaptations to carbohydrate periodization in elite endurance athletes. Med Sci Sport Exerc 49:2486–2497

    CAS  Google Scholar 

  • Georg Jensen M, Kristensen M, Belza A, Knudsen JC, Astrup A (2012) Acute effect of alginate-based preload on satiety feelings, energy intake, and gastric emptying rate in healthy subjects. Obesity 20:1851–1858

    CAS  PubMed  Google Scholar 

  • Gheibi S, Bakhtiarzadeh F, Jeddi S, Farrokhfall K, Zardooz H, Ghasemi A (2017) Nitrite increases glucose-stimulated insulin secretion and islet insulin content in obese type 2 diabetic male rats. Nitric Oxide 64:39–51

    PubMed  Google Scholar 

  • Glace BW, Kremenic IJ, McHugh MP (2019) Effect of carbohydrate beverage ingestion on central versus peripheral fatigue: a placebo-controlled, randomized trial in cyclists. Appl Physiol Nutr Metab 44:139–147

    CAS  PubMed  Google Scholar 

  • Glaister M, Pattison JR, Muniz-Pumares D, Patterson SD, Foley P (2015) Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J Strength Cond Res 29:165–174

    PubMed  Google Scholar 

  • Goddard MS, Young G, Marcus R (1984) The effect of amylose content on insulin and glucose responses to ingested rice. Am J Clin Nutr 39:388–392

    CAS  PubMed  Google Scholar 

  • Goedecke JH, Elmer-English R, Dennis SC, Schloss I, Noakes TD, Lambert EV (1999) Effects of medium-chain triacylglycerol ingested with carbohydrate on metabolism and exercise performance. Int J Sport Nutr 9:35–47

    CAS  PubMed  Google Scholar 

  • Goedecke JH, Clark VR, Noakes TD, Lambert EV (2005) The effects of medium-chain triacylglycerol and carbohydrate ingestion on ultra-endurance exercise performance. Int J Sport Nutr Exerc Metab 15:15–27

    CAS  PubMed  Google Scholar 

  • Goltz FR, Thackray AE, King JA, Dorling JL, Atkinson G, Stensel DJ (2018) Interindividual responses of appetite to acute exercise: a replicated crossover study. Med Sci Sports Exerc 50:758–768

    PubMed  Google Scholar 

  • Gonzalez JT, Fuchs CJ, Smith FE, Thelwall PE, Taylor R, Stevenson EJ, Trenell MI, Cermak NM, van Loon LJC (2015) Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Metab 309:E1032–E1039

    CAS  Google Scholar 

  • Gonzalez J, Fuchs C, Betts J, van Loon L (2017) Glucose plus fructose ingestion for post-exercise recovery—greater than the sum of its parts? Nutrients 9:344

    PubMed Central  Google Scholar 

  • Goodyear LJ, Hirshman MF, King PA, Horton ED, Thompson CM, Horton ES (1990) Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J Appl Physiol 68:193–198

    CAS  PubMed  Google Scholar 

  • Graham TE, Spriet LL (1991) Performance and metabolic responses to a high caffeine dose during prolonged exercise. J Appl Physiol 71:2292–2298

    CAS  PubMed  Google Scholar 

  • Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78:867–874

    CAS  PubMed  Google Scholar 

  • Graham TE, Sathasivam P, Rowland M, Marko N, Greer F, Battram D (2001) Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Can J Physiol Pharmacol 79:559–565

    CAS  PubMed  Google Scholar 

  • Gray BJ, Page R, Turner D, West DJ, Campbell MD, Kilduff LP, Stephens JW, Bain SC, Bracken RM (2016) Improved end-stage high-intensity performance but similar glycemic responses after waxy barley starch ingestion compared to dextrose in type 1 diabetes. J Sport Med Phys Fit 56:1392–1400

    CAS  Google Scholar 

  • Greer F, Hudson R, Ross R, Graham T (2001) Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes 50:2349–2354

    CAS  PubMed  Google Scholar 

  • Gui Z, Sun F, Si G, Chen Y (2017) Effect of protein and carbohydrate solutions on running performance and cognitive function in female recreational runners. PLoS ONE 12:e0185982

    PubMed  PubMed Central  Google Scholar 

  • Guillochon M, Rowlands DS (2017) Solid, gel, and liquid carbohydrate format effects on gut comfort and performance. Int J Sport Nutr Exerc Metab 27:247–254

    CAS  PubMed  Google Scholar 

  • Hagenfeldt L, Wahren J (1971) Human forearm muscle metabolism during exercise VI. Substrate utilization in prolonged fasting. Scand J Clin Lab Invest 27:299–306

    CAS  PubMed  Google Scholar 

  • Hall AH, Leveritt MD, Ahuja KDK, Shing CM (2013) Coingestion of carbohydrate and protein during training reduces training stress and enhances subsequent exercise performance. Appl Physiol Nutr Metab 38:597–604

    CAS  PubMed  Google Scholar 

  • Handzlik MK, Gleeson M (2013) Likely additive ergogenic effects of combined preexercise dietary nitrate and caffeine ingestion in trained cyclists. ISRN Nutr 2013:1–8

    Google Scholar 

  • Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK (2005) Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol 98:93–99

    PubMed  Google Scholar 

  • Hansen M, Bangsbo J, Jensen J, Krause-Jensen M, Bibby BM, Sollie O, Hall UA, Madsen K (2016) Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sport Nutr 13:9

    Google Scholar 

  • Hargreaves M, Costill DL, Fink WJ (1987) Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Med Sci Sport Exerc 19:33–36

    CAS  Google Scholar 

  • Hargreaves M, Kiens B, Richter EA (1991) Effect of increased plasma free fatty acid concentration on muscle metabolism in exercising men. J Appl Physiol 70:194–201

    CAS  PubMed  Google Scholar 

  • Havemann L, West SJ, Goedecke JH, Macdonald IA, St Clair Gibson A, Noakes TD, Lambert EV (2006) Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol 100:194–202

    CAS  PubMed  Google Scholar 

  • Hawley JA (2002) Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sport Exerc 34:1485–1491

    CAS  Google Scholar 

  • Hawley JA, Bosch AN, Weltan SM, Dennis SC, Noakes TD (1994) Glucose kinetics during prolonged exercise in euglycaemic and hyperglycaemic subjects. Pflügers Arch Eur J Physiol 426:378–386

    CAS  Google Scholar 

  • Hawley JA, Burke LM, Angus DJ, Fallon KE, Martin DT, Febbraio MA (2000) Effect of altering substrate availability on metabolism and performance during intense exercise. Br J Nutr 84:829–838

    CAS  PubMed  Google Scholar 

  • Hearris MA, Hammond KM, Seaborne RA, Stocks B, Shepherd SO, Philp A, Sharples AP, Morton JP, Louis JB (2019) Graded reductions in preexercise muscle glycogen impair exercise capacity but do not augment skeletal muscle cell signaling: Implications for CHO periodization. J Appl Physiol 126:1587–1597

    CAS  PubMed  Google Scholar 

  • Helge JW (2017) A high carbohydrate diet remains the evidence based choice for elite athletes to optimise performance. J Physiol 595:2775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helge JW, Richter EA, Kiens B (1996) Interaction of training and diet on metabolism and endurance during exercise in man. J Physiol 492(Pt 1):293–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hezel M, Peleli M, Liu M, Zollbrecht C, Jensen BL, Checa A, Giulietti A, Wheelock CE, Lundberg JO, Weitzberg E, Carlström M (2016) Dietary nitrate improves age-related hypertension and metabolic abnormalities in rats via modulation of angiotensin II receptor signaling and inhibition of superoxide generation. Free Radic Biol Med 99:87–98

    CAS  PubMed  Google Scholar 

  • Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269

    CAS  Google Scholar 

  • Hill L, Bosch AN (2017) Mixed drink increased carbohydrate oxidation but not performance during a 40 km time trial. S Afr J Sport Med 28:79–84

    Google Scholar 

  • Hinckson E, Hopkins W (2005) Reliability of time to exhaustion analyzed with critical-power and log-log modeling. Med Sci Sport Exerc 37:696–701

    Google Scholar 

  • Hogervorst E, Bandelow S, Schmitt J, Jentjens R, Oliveira M, Allgrove J, Carter T, Gleeson M (2008) Caffeine improves physical and cognitive performance during exhaustive exercise. Med Sci Sports Exerc 40:1841–1851

    CAS  PubMed  Google Scholar 

  • Holloszy JO, Narahara HT (1967) Nitrate ions: Potentiation of increased permeability to sugar associated with muscle contraction. Science (80-) 155:573–575

    CAS  Google Scholar 

  • Hoon MW, Johnson NA, Chapman PG, Burke LM (2013) The effect of nitrate supplementation on exercise performance in healthy individuals: a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab 23:522–532

    CAS  PubMed  Google Scholar 

  • Houghton LA, Mangnall YF, Read NW (1990) Effect of incorporating fat into a liquid test meal on the relation between intragastric distribution and gastric emptying in human volunteers. Gut 31:1226–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes WE, Kruse NT, Ueda K, Feider AJ, Hanada S, Bock JM, Casey DP (2020) Dietary nitrate does not acutely enhance skeletal muscle blood flow and vasodilation in the lower limbs of older adults during single-limb exercise. Eur J Appl Physiol 120:1357–1369

    CAS  PubMed  Google Scholar 

  • Hulston CJ, Jeukendrup AE (2008) Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med Sci Sports Exerc 40:2096–2104

    CAS  PubMed  Google Scholar 

  • Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, Morton JP (2018) Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sport Med 48:1031–1048

    Google Scholar 

  • Ivy J, Goforth H (2002) Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol 93:1337–1344

    CAS  PubMed  Google Scholar 

  • Ivy JL, Costill DL, Fink WJ, Lower RW (1978) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sport Exerc 11:6–11

    Google Scholar 

  • Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF (1988) Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol 64:1480–1485

    CAS  PubMed  Google Scholar 

  • Ivy JL, Res PT, Sprague RC, Widzer MO (2003) Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab 13:382–395

    CAS  PubMed  Google Scholar 

  • Jacobson TL, Febbraio MA, Arkinstall MJ, Hawley JA (2001) Effect of caffeine co-ingested with carbohydrate or fat on metabolism and performance in endurance-trained men. Exp Physiol 86:137–144

    CAS  PubMed  Google Scholar 

  • Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34:362–366

    CAS  PubMed  Google Scholar 

  • Jentjens RLPG, Jeukendrup AE (2003) Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. Eur J Appl Physiol 88:459–465

    CAS  PubMed  Google Scholar 

  • Jentjens RLPG, Jeukendrup AE (2005) High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr 93:485–492

    CAS  PubMed  Google Scholar 

  • Jentjens RLPG, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE (2006) Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol 100:807–816

    CAS  PubMed  Google Scholar 

  • Jeppesen J, Kiens B (2012) Regulation and limitations to fatty acid oxidation during exercise. J Physiol 590:1059–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeukendrup AE (2004) Carbohydrate intake during exercise and performance. Nutrition 20:669–677

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE (2008) Carbohydrate feeding during exercise. Eur J Sport Sci 8:77–86

    Google Scholar 

  • Jeukendrup AE (2010) Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care 13:452–457

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE (2017) Training the gut for athletes. Sport Med 47:101–110

    Google Scholar 

  • Jeukendrup AE, Aldred S (2004) Fat supplementation, health, and endurance performance. Nutrition 20:678–688

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Jentjens R (2000) Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sport Med 29:407–424

    CAS  Google Scholar 

  • Jeukendrup AE, Moseley L (2010) Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sport 20:112–121

    CAS  Google Scholar 

  • Jeukendrup AE, Saris WH, Schrauwen P, Brouns F, Wagenmakers AJ (1995) Metabolic availability of medium-chain triglycerides coingested with carbohydrates during prolonged exercise. J Appl Physiol 79:756–762

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Thielen JJ, Wagenmakers AJ, Brouns F, Saris WH (1998) Effect of medium-chain triacylglycerol and carbohydrate ingestion during exercise on substrate utilization and subsequent cycling performance. Am J Clin Nutr 67:397–404

    CAS  PubMed  Google Scholar 

  • Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH (1999) Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol 276:E672–E683

    CAS  PubMed  Google Scholar 

  • Johannsen NM, Sharp RL (2007) Effect of preexercise ingestion of modified corn starch on substrate oxidation during endurance exercise. Int J Sport Nutr Exerc Metab 17:232–243

    CAS  PubMed  Google Scholar 

  • Johnson IT, Gee JM (1981) Effect of gel-forming gums on the intestinal unstirred layer and sugar transport in vitro. Gut 22:398–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AM (2014) Dietary nitrate supplementation and exercise performance. Sport Med 44(Suppl 1):S35-45

    Google Scholar 

  • Jones AM, Thompson C, Wylie LJ, Vanhatalo A (2018) Dietary nitrate and physical performance. Ann Rev Nutr 38:303–328

    CAS  Google Scholar 

  • Jong-Yeon K, Hickner RC, Dohm GL, Houmard JA (2002) Long- and medium-chain fatty acid oxidation is increased in exercise-trained human skeletal muscle. Metabolism 51:460–464

    PubMed  Google Scholar 

  • Jozsi AC, Trappe TA, Starling RD, Goodpaster B, Trappe SW, Fink WJ, Costill DL (1996) The influence of starch structure on glycogen resynthesis and subsequent cycling performance. Int J Sport Med 17:373–378

    CAS  Google Scholar 

  • Karamanolis IA, Laparidis KS, Volaklis KA, Douda HT, Tokmakidis SP (2011) The effects of pre-exercise glycemic index food on running capacity. Int J Sport Med 32:666–671

    CAS  Google Scholar 

  • Kendrick ZV, Steffen CA, Rumsey WL, Goldberg DI (1987) Effect of estradiol on tissue glycogen metabolism in exercised oophorectomized rats. J Appl Physiol 63:492–496

    CAS  PubMed  Google Scholar 

  • King AJ, O’Hara JP, Morrison DJ, Preston T, King RFGJ (2018) Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiol Rep 6:e13555

    PubMed Central  Google Scholar 

  • King AJ, O’Hara JP, Arjomandkhah NC, Rowe J, Morrison DJ, Preston T, King RFGJ (2019) Liver and muscle glycogen oxidation and performance with dose variation of glucose–fructose ingestion during prolonged (3 h) exercise. Eur J Appl Physiol 119:1157–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirwan JP, Cyr-Campbell D, Campbell WW, Scheiber J, Evans WJ (2001) Effects of moderate and high glycemic index meals on metabolism and exercise performance. Metabolism 50:849–855

    CAS  PubMed  Google Scholar 

  • Klein J, Nyhan WL, Kern M (2009) The effects of alanine ingestion on metabolic responses to exercise in cyclists. Amino Acids 37:673–680

    CAS  PubMed  Google Scholar 

  • König D, Zdzieblik D, Holz A, Theis S, Gollhofer A (2016) Substrate utilization and cycling performance following PalatinoseTMingestion: a randomized, double-blind controlled trial. Nutrients 8:390

    PubMed Central  Google Scholar 

  • Korach-André M, Burelle Y, Péronnet F, Massicotte D, Lavoie C, Hillaire-Marcel C, Korach-Andre M, Peronnet F (2002) Differential metabolic fate of the carbon skeleton and amino-N of [13C]alanine and [15N]alanine ingested during prolonged exercise. J Appl Physiol 93:499–504

    PubMed  Google Scholar 

  • Kovacs EMR, Stegen JHCH, Brouns F (1998) Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol 85:709–715

    CAS  PubMed  Google Scholar 

  • Krogh A, Lindhard J (1920) The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J 14:290–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert E, Goedecke J, Zyl C (2001) High-fat diet versus habitual diet prior to carbohydrate loading: effects on exercise metabolism and cycling performance. Int J Sport Nutr Exerc Metab 11:209–225

    CAS  PubMed  Google Scholar 

  • Lambert GP, Lang J, Bull A, Pfeifer PC, Eckerson J, Moore C, Lanspa S, O’Brien J (2008) Fluid restriction during running increases GI permeability. Int J Sport Med 29:194–198

    CAS  Google Scholar 

  • Lane SC, Hawley JA, Desbrow B, Jones AM, Blackwell JR, Ross ML, Zemski AJ, Burke LM (2014) Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab 39:1050–1057

    CAS  PubMed  Google Scholar 

  • Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E (2011) Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab 13:149–159

    CAS  PubMed  Google Scholar 

  • Latulippe ME, Skoog SM (2011) Fructose malabsorption and intolerance: effects of fructose with and without simultaneous glucose ingestion. Crit Rev Food Sci Nutr 51:583–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leckey JJ, Burke LM, Morton JP, Hawley JA (2016) Altering fatty acid availability does not impair prolonged, continuous running to fatigue: evidence for carbohydrate dependence. J Appl Physiol 120:107–113

    CAS  PubMed  Google Scholar 

  • Leckey JJ, Ross ML, Quod M, Hawley JA, Burke LM (2017) Ketone diester ingestion impairs time-trial performance in professional cyclists. Front Physiol 8:806

    PubMed  PubMed Central  Google Scholar 

  • Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, Schneiter P (2010) Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr 92:1071–1079

    CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJC, Hammond KM, Vasdev A, Poole KL, Impey SG, Close GL, Morton JP (2014) Self-selecting fluid intake while maintaining high carbohydrate availability does not impair half-marathon performance. Int J Sports Med 35:1216–1222

    CAS  PubMed  Google Scholar 

  • Lehmann U, Robin F (2007) Slowly digestible starch—its structure and health implications: a review. Trends Food Sci Technol 18:346–355

    CAS  Google Scholar 

  • Leijssen DP, Saris WH, Jeukendrup AE, Wagenmakers AJ (1995) Oxidation of exogenous [13C]galactose and [13C]glucose during exercise. J Appl Physiol 79:720–725

    CAS  PubMed  Google Scholar 

  • Leiper J, Piehl Aulin K, Soderlund K (2000) Improved gastric emptying rate in humans of a unique glucose polymer with gel-forming properties. Scand J Gastroenterol 35:1143–1149

    CAS  PubMed  Google Scholar 

  • Li T, Lu X, Sun Y, Yang X (2016) Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food Nutr Res 60:32010

    PubMed  Google Scholar 

  • Lund S, Holman GD, Schmitz O, Pedersen O (1995) Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA 92:5817–5821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn WR, Pasiakos SM, Colletto MR, Karfonta KE, Carbone JW, Anderson JM, Rodriguez NR (2012) Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance. Med Sci Sport Exerc 44:682–691

    CAS  Google Scholar 

  • M’Kaouar H, Péronnet F, Massicotte D, Lavoie C (2004) Gender difference in the metabolic response to prolonged exercise with [13C]glucose ingestion. Eur J Appl Physiol 92:462–469

    PubMed  Google Scholar 

  • Maher AC, Akhtar M, Tarnopolsky MA (2010) Men supplemented with 17β-estradiol have increased β-oxidation capacity in skeletal muscle. Physiol Genom 42:342–347

    CAS  Google Scholar 

  • Maljaars J, Peters HPF, Masclee AM (2007) Review article: the gastrointestinal tract: neuroendocrine regulation of satiety and food intake. Aliment Pharm Ther 26(Suppl 2):241–250

    Google Scholar 

  • Marciani L, Lopez-Sanchez P, Pettersson S, Hoad C, Abrehart N, Ahnoff M, Ström A (2019) Alginate and HM-pectin in sports-drink give rise to intra-gastric gelation in vivo. Food Funct 10:7892–7899

    CAS  PubMed  Google Scholar 

  • Maresch CC, Petry SF, Theis S, Bosy-Westphal A, Linn T (2017) Low glycemic index prototype isomaltulose—update of clinical trials. Nutrients 9:381

    PubMed Central  Google Scholar 

  • Margolis LM, O’Fallon KS (2020) Utility of ketone supplementation to enhance physical performance: a systematic review. Adv Nutr 11:412–419

    PubMed  Google Scholar 

  • Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Hatch AM, Montain SJ, Pasiakos SM (2019) Exercising with low muscle glycogen content increases fat oxidation and decreases endogenous, but not exogenous carbohydrate oxidation. Metabolism 97:1–8

    CAS  PubMed  Google Scholar 

  • Marquet LA, Brisswalter J, Louis J, Tiollier E, Burke LM, Hawley JA, Hausswirth C (2016) Enhanced endurance performance by periodization of carbohydrate intake: “Sleep Low” strategy. Med Sci Sport Exerc 48:663–672

    CAS  Google Scholar 

  • Martinez-Lagunas V, Ding Z, Bernard JR, Wang B, Ivy JL (2010) Added protein maintains efficacy of a low-carbohydrate sports drink. J Strength Cond Res 24:48–59

    PubMed  Google Scholar 

  • Massicotte D, Péronnet F, Brisson G, Boivin L, Hillaire-Marcel C (1990) Oxidation of exogenous carbohydrate during prolonged exercise in fed and fasted conditions. Int J Sport Med 11:253–258

    CAS  Google Scholar 

  • Massicotte D, Peronnet F, Brisson GR, Hillaire-Marcel C (1992) Oxidation of exogenous medium-chain free fatty acids during prolonged exercise: comparison with glucose. J Appl Physiol 73:1334–1339

    CAS  PubMed  Google Scholar 

  • Maughan RJ, Fenn CE, Leiper JB (1989) Effects of fluid, electrolyte and substrate ingestion on endurance capacity. Eur J Appl Physiol Occup Physiol 58:481–486

    CAS  PubMed  Google Scholar 

  • McCubbin AJ, Zhu A, Gaskell SK, Costa RJS (2020) Hydrogel carbohydrate-electrolyte beverage does not improve glucose availability, substrate oxidation, gastrointestinal symptoms or exercise performance, compared with a concentration and nutrient-matched placebo. Int J Sport Nutr Exerc Metab 30:25–33

    CAS  PubMed  Google Scholar 

  • McGlory C, Morton JP (2010) The effects of postexercise consumption of high-molecular-weight versus low-molecular-weight carbohydrate solutions on subsequent high-intensity interval-running capacity. Int J Sport Nutr Exerc Metab 20:361–369

    CAS  PubMed  Google Scholar 

  • McSwiney FT, Wardrop B, Hyde PN, Lafountain RA, Volek JS, Doyle L (2018) Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism 81:25–34

    CAS  PubMed  Google Scholar 

  • Mears SA, Worley J, Mason GS, Hulston CJ, James LJ (2020) Addition of sodium alginate and pectin to a carbohydrate-electrolyte solution does not influence substrate oxidation, gastrointestinal comfort or cycling performance. Appl Physiol Nutr Metab 45:675–678

    CAS  PubMed  Google Scholar 

  • Mittleman KD, Ricci MR, Bailey SP (1998) Branched-chain amino acids prolong exercise during heat stress in men and women. Med Sci Sport Exerc 30:83–91

    CAS  Google Scholar 

  • Mock MG, Hirsch KR, Blue MNM, Trexler ET, Roelofs EJ, Smith-Ryan AE (2018) Post-exercise ingestion of low or high molecular weight glucose polymer solution does not improve cycle performance in female athletes. J Strength Cond Res. https://doi.org/10.1519/JSC.0000000000002560

    Article  Google Scholar 

  • Moore L, Szpalek HM, McNaughton LR (2013) Preexercise high and low glycemic index meals and cycling performance in untrained females: randomized, cross-over trial of efficacy. Res Sport Med 21:24–36

    Google Scholar 

  • Murakami I, Sakuragi T, Uemura H, Menda H, Shindo M, Tanaka H (2012) Significant effect of a pre-exercise high-fat meal after a 3-day high-carbohydrate diet on endurance performance. Nutrients 4:625–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murtaza N, Burke LM, Vlahovich N, Charlesson B, O’Neill H, Ross ML, Campbell KL, Krause L, Morrison M (2019) The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients 11:261

    CAS  PubMed Central  Google Scholar 

  • Newell M, Wallis G, Hunter A, Tipton K, Galloway S, Newell ML, Wallis GA, Hunter AM, Tipton KD, Galloway SDR (2018) Metabolic responses to carbohydrate ingestion during exercise: associations between carbohydrate dose and endurance performance. Nutrients 10:37

    PubMed Central  Google Scholar 

  • Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien WJ, Stannard SR, Clarke JA, Rowlands DS (2013) Fructose-maltodextrin ratio governs exogenous and other cho oxidation and performance. Med Sci Sport Exerc 45:1814–1824

    Google Scholar 

  • O’Dea K, Nestel PJ, Antonoff L (1980) Physical factors influencing postprandial glucose and insulin responses to starch. Am J Clin Nutr 33:760–765

    PubMed  Google Scholar 

  • O’Malley T, Myette-Cote E, Durrer C, Little JP (2017) Nutritional ketone salts increase fat oxidation but impair high-intensity exercise performance in healthy adult males. Appl Physiol Nutr Metab 42:1031–1035

    PubMed  Google Scholar 

  • Odland LM, Heigenhauser GJ, Wong D, Hollidge-Horvat MG, Spriet LL (1998) Effects of increased fat availability on fat-carbohydrate interaction during prolonged exercise in men. Am J Physiol 274:R894–R902

    CAS  PubMed  Google Scholar 

  • Odland LM, Heigenhauser GJF, Spriet LL (2000) Effects of high fat provision on muscle PDH activation and malonyl-CoA content in moderate exercise. J Appl Physiol 89:2352–2358

    CAS  PubMed  Google Scholar 

  • Okano G, Sato Y, Takumi Y, Sugawara M (1996) Effect of 4 h preexercise high carbohydrate and high fat meal ingestion on endurance performance and metabolism. Int J Sport Med 17:530–534

    CAS  Google Scholar 

  • Okano G, Sato Y, Murata Y (1998) Effect of elevated blood FFA levels on endurance performance after a single fat meal ingestion. Med Sci Sport Exerc 30:763–768

    CAS  Google Scholar 

  • Oliver JM, Almada AL, Van Eck LE, Shah M, Mitchell JB, Jones MT, Jagim AR, Rowlands DS (2016) Ingestion of high molecular weight carbohydrate enhances subsequent repeated maximal power: a randomized controlled trial. PLoS ONE 11:e0163009

    PubMed  PubMed Central  Google Scholar 

  • Onywera VO, Kiplamai FK, Tuitoek PJ, Boit MK, Pitsiladis YP (2004) Food and macronutrient intake of elite Kenyan distance runners. Int J Sport Nutr Exerc Metab 14:709–719

    CAS  PubMed  Google Scholar 

  • Oosthuyse T, Millen AME (2016) Comparison of energy supplements during prolonged exercise for maintenance of cardiac function: carbohydrate only versus carbohydrate plus whey or casein hydrolysate. Appl Physiol Nutr Metab 41:674–683

    CAS  PubMed  Google Scholar 

  • Oosthuyse T, Carstens M, Millen AM (2015) Ingesting isomaltulose versus fructose-maltodextrin during prolonged moderate-heavy exercise increases fat oxidation but impairs gastrointestinal comfort and cycling performance. Int J Sport Nutr Exerc Metab 25:427–438

    PubMed  Google Scholar 

  • Ormsbee MJ, Bach CW, Baur DA (2014) Pre-exercise nutrition: the role of macronutrients, modified starches and supplements on metabolism and endurance performance. Nutrients 6:1782–1808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osterberg KL, Zachwieja JJ, Smith JW (2008) Carbohydrate and carbohydrate + protein for cycling time-trial performance. J Sport Sci 26:227–233

    Google Scholar 

  • Parks RB, Angus HF, King DS, Sharp RL (2018) Effect of preexercise ingestion of modified amylomaize starch on glycemic response while cycling. Int J Sport Nutr Exerc Metab 28:82–89

    CAS  PubMed  Google Scholar 

  • Paul D, Jacobs KA, Geor RJ, Hinchcliff KW (2003) No effect of pre-exercise meal on substrate metabolism and time trial performance during intense endurance exercise. Int J Sport Nutr Exerc Metab 13:489–503

    CAS  PubMed  Google Scholar 

  • Pawlak-Chaouch M, Boissière J, Gamelin FX, Cuvelier G, Berthoin S, Aucouturier J (2016) Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: a systematic review and a meta-analysis. Nitric Oxide 53:65–76

    CAS  PubMed  Google Scholar 

  • Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, Watt MJ, Hawley JA (2008) High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol 105:7–13

    CAS  PubMed  Google Scholar 

  • Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465

    CAS  PubMed  Google Scholar 

  • Petersson J, Phillipson M, Jansson EÅ, Patzak A, Lundberg JO, Holm L (2007) Dietary nitrate increases gastric mucosal blood flow and mucosal defense. Am J Physiol Gastrointest Liver Physiol 292:G718–G724

    CAS  PubMed  Google Scholar 

  • Petrick HL, Brunetta HS, Pignanelli C, Nunes EA, van Loon LJC, Burr JF, Holloway GP (2020) In vitro ketone-supported mitochondrial respiration is minimal when other substrates are readily available in cardiac and skeletal muscle. J Physiol. https://doi.org/10.1113/JP280032

    Article  PubMed  Google Scholar 

  • Pettersson S, Edin F, Bakkman L, McGawley K (2019) Effects of supplementing with an 18% carbohydrate-hydrogel drink versus a placebo during whole-body exercise in −5 °C with elite cross-country ski athletes: a crossover study. J Int Soc Sports Nutr 16:46

    PubMed  PubMed Central  Google Scholar 

  • Pettersson S, Ahnoff M, Edin F, Lingström P, Simark Mattsson C, Andersson-Hall U (2020) A hydrogel drink with high fructose content generates higher exogenous carbohydrate oxidation and lower dental biofilm pH compared to two other, commercially available, carbohydrate sports drinks. Front Nutr 7:88

    PubMed  PubMed Central  Google Scholar 

  • Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE (2009) The effect of carbohydrate gels on gastrointestinal tolerance during a 16–km run. Int J Sport Nutr Exerc Metab 19:485–503

    CAS  PubMed  Google Scholar 

  • Pfeiffer B, Stellingwerff T, Zaltas E, Jeukendrup AE (2010) Oxidation of solid versus liquid CHO sources during exercise. Med Sci Sport Exerc 42:2030–2037

    CAS  Google Scholar 

  • Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, Jeukendrup AE (2012) Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sport Exerc 44:344–351

    CAS  Google Scholar 

  • Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL (1983) The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32:769–776

    CAS  PubMed  Google Scholar 

  • Pickering C (2018) Letter to the editor. Metabolism 83:e1

    CAS  PubMed  Google Scholar 

  • Pickering C, Grgic J (2019) Caffeine and exercise: what next? Sport Med 49:1007–1030

    Google Scholar 

  • Pitsiladis YP, Smith I, Maughan RJ (1999) Increased fat availability enhances the capacity of trained individuals to perform prolonged exercise. Med Sci Sport Exerc 31:1570–1579

    CAS  Google Scholar 

  • Podlogar T, Free B, Wallis GA (2020) High rates of fat oxidation are maintained after the sleep low approach despite delayed carbohydrate feeding during exercise. Eur J Sport Sci 28:1–11. https://doi.org/10.1080/17461391.2020.1730447

    Article  Google Scholar 

  • Poffé C, Ramaekers M, Bogaerts S, Hespel P (2020) Bicarbonate unlocks the ergogenic action of ketone monoester intake in endurance exercise. Med Sci Sport Exerc. https://doi.org/10.1249/MSS.0000000000002467

    Article  Google Scholar 

  • Powley TL, Phillips RJ (2004) Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 82:69–74

    CAS  PubMed  Google Scholar 

  • Prins PJ, Koutnik AP, D’Agostino DP, Rogers CQ, Seibert JF, Breckenridge JA, Jackson DS, Ryan EJ, Buxton JD, Ault DL (2020) Effects of an exogenous ketone supplement on five-kilometer running performance. J Hum Kinet 72:115–127

    PubMed  PubMed Central  Google Scholar 

  • Pugh JN, Wagenmakers AJM, Doran DA, Fleming SC, Fielding BA, Morton JP, Close GL (2020) Probiotic supplementation increases carbohydrate metabolism in trained male cyclists: a randomized, double-blind, placebo-controlled crossover trial. Am J Physiol Endocrinol Metab 318:E504–E513

    CAS  PubMed  Google Scholar 

  • Ravussin E, Bogardus C, Scheidegger K, LaGrange B, Horton ED, Horton ES (1986) Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. J Appl Physiol 60:893–900

    CAS  PubMed  Google Scholar 

  • Rehrer N, Wagenmakers A, Beckers E, Halliday D, Leiper J, Brouns F, Maughan R, Westerterp K, Saris W (1992) Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. J Appl Physiol 72:468–475

    CAS  PubMed  Google Scholar 

  • Richards JC, Racine ML, Hearon CM, Kunkel M, Luckasen GJ, Larson DG, Allen JD, Dinenno FA (2018) Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults. Physiol Rep 6:e13572

    PubMed Central  Google Scholar 

  • Richter EA, Garetto LP, Goodman MN, Ruderman NB (1982) Muscle glucose metabolism following exercise in the rat. Increased sensitivity to insulin. J Clin Invest 69:785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riddell MC, Bar-Or O, Hollidge-Horvat M, Schwarcz HP, Heigenhauser GJF (2000) Glucose ingestion and substrate utilization during exercise in boys with IDDM. J Appl Physiol 88:1239–1246

    CAS  PubMed  Google Scholar 

  • Riddell M, Bar-Or O, Wilk B, Parolin M, Heigenhauser G (2001) Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10–14 yr. J Appl Physiol 90:903–911

    CAS  PubMed  Google Scholar 

  • Riddell MC, Partington SL, Stupka N, Armstrong D, Rennie C, Tarnopolsky MA (2003) Substrate utilization during exercise performed with and without glucose ingestion in female and male endurance-trained athletes. Int J Sport Nutr Exerc Metab 13:407–421

    CAS  PubMed  Google Scholar 

  • Riddell MC, Scott SN, Fournier PA, Colberg SR, Gallen IW, Moser O, Stettler C, Yardley JE, Zaharieva DP, Adolfsson P, Bracken RM (2020) The competitive athlete with type 1 diabetes. Diabetologia 63:1475–1490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riis S, Møller AB, Dollerup O, Høffner L, Jessen N, Madsen K (2019) Acute and sustained effects of a periodized carbohydrate intake using the sleep-low model in endurance-trained males. Scand J Med Sci Sport 29:1866–1880

    Google Scholar 

  • Roberts MD, Lockwood C, Dalbo VJ, Volek J, Kerksick CM (2011) Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic responses to prolonged exercise in trained cyclists. Nutrition 27:659–665

    CAS  PubMed  Google Scholar 

  • Roberts JD, Tarpey MD, Kass LS, Tarpey RJ, Roberts MG (2014) Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr 11:8

    PubMed  PubMed Central  Google Scholar 

  • Robitaille M, Dubé MC, Weisnagel SJ, Prud’homme D, Massicotte D, Péronnet F, Lavoie C (2007) Substrate source utilization during moderate intensity exercise with glucose ingestion in Type 1 diabetic patients. J Appl Physiol 103:119–124

    CAS  PubMed  Google Scholar 

  • Rodger S, Plews D, Laursen P, Driller M (2017) Oral β-hydroxybutyrate salt fails to improve 4-minute cycling performance following submaximal exercise. J Sci Cycl 6:26–31

    Google Scholar 

  • Rodriguez NR, Di Marco NM, Langley S (2009) American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sport Exerc 41:709–731

    Google Scholar 

  • Romano-Ely BC, Todd MK, Saunders MJ, Laurent TS (2006) Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sport Exerc 38:1608–1616

    CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol Endocrinol Metab 265:E380–E391

    CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR (1995) Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol 79:1939–1945

    CAS  PubMed  Google Scholar 

  • Rosset R, Egli L, Lecoultre V (2017) Glucose–fructose ingestion and exercise performance: the gastrointestinal tract and beyond. Eur J Sport Sci 17:874–884

    PubMed  Google Scholar 

  • Roux-Mallouf T, Laurent J, Besset D, Marillier M, Larribaut J, Belaidi E, Corne C, Doutreleau S, Verges S (2019) Effects of acute nitric oxide precursor intake on peripheral and central fatigue during knee extensions in healthy men. Exp Physiol 104:1100–1114

    PubMed  Google Scholar 

  • Rowell LB, Brengelmann GL, Blackmon JR, Twiss RD, Kusumi F (1968) Splanchnic blood flow and metabolism in heat-stressed man. J Appl Physiol 24:475–484

    CAS  PubMed  Google Scholar 

  • Rowlands DS, Clarke J (2011) Lower oxidation of a high molecular weight glucose polymer vs glucose during cycling. Appl Physiol Nutr Metab 306:298–306

    Google Scholar 

  • Rowlands DS, Hopkins WG (2002a) Effect of high-fat, high-carbohydrate, and high-protein meals on metabolism and performance during endurance cycling. Int J Sport Nutr Exerc Metab 12:318–335

    CAS  PubMed  Google Scholar 

  • Rowlands DS, Hopkins WG (2002b) Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism 51:678–690

    CAS  PubMed  Google Scholar 

  • Rowlands D, Houltham S (2017) Multiple-transportable carbohydrate effect on long-distance triathlon performance. Med Sci Sport Exerc 49:1734–1744

    CAS  Google Scholar 

  • Rowlands DS, Wadsworth DP (2012) No effect of protein coingestion on exogenous glucose oxidation during exercise. Med Sci Sport Exerc 44:701–708

    CAS  Google Scholar 

  • Rowlands DS, Wallis GA, Shaw C, Jentjens RLPG, Jeukendrup AE (2005) Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation. Med Sci Sport Exerc 37:1510–1516

    CAS  Google Scholar 

  • Rowlands DS, Swift M, Ros M, Green JG (2012) Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab 37:425–436

    CAS  PubMed  Google Scholar 

  • Rowlands DS, Houltham S, Musa-Veloso K, Brown F, Paulionis L, Bailey D (2015) Fructose-glucose composite carbohydrates and endurance performance: critical review and future perspectives. Sport Med 45:1561–1576

    Google Scholar 

  • Ruby BC, Coggan AR, Zderic TW (2002) Gender differences in glucose kinetics and substrate oxidation during exercise near the lactate threshold. J Appl Physiol 92:1125–1132

    CAS  PubMed  Google Scholar 

  • Russell RR, Taegtmeyer H (1991) Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest 87:384–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satabin P, Portero P, Defer G, Bricout J, Guezennec CY (1987) Metabolic and hormonal responses to lipid and carbohydrate diets during exercise in man. Med Sci Sport Exerc 19:218–223

    CAS  Google Scholar 

  • Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, Chance B, Clarke K, Veech RL (1995) Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    CAS  PubMed  Google Scholar 

  • Saunders MJ (2011) Carbohydrate-protein intake and recovery from endurance exercise: Is chocolate milk the answer? Curr Sport Med Rep 10:203–210

    Google Scholar 

  • Saunders MJ, Luden ND (2012) Macronutrient intake during endurance activity to optimize performance. In: Nutrient timing: Metabolic optimization for health, performance, and recovery. Taylor & Francis, pp 119–138

  • Saunders MJ, Kane MD, Todd MK (2004) Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage. Med Sci Sport Exerc 36:1233–1238

    CAS  Google Scholar 

  • Saunders MJ, Luden ND, Herrick JE (2007) Consumption of an oral carbohydrate-protein gel improves cycling endurance and prevents postexercise muscle damage. J Strength Cond Res 21:678–684

    PubMed  Google Scholar 

  • Saunders MJ, Moore RW, Kies AK, Luden ND, Pratt CA (2009) Carbohydrate and protein hydrolysate coingestions improvement of late-exercise time-trial performance. Int J Sport Nutr Exerc Metab 19:136–149

    PubMed  Google Scholar 

  • Saunders MJ, Luden ND, DeWitt CR, Gross MC, Rios AD (2018) Protein supplementation during or following a marathon run influences post-exercise recovery. Nutrients 10:333

    PubMed Central  Google Scholar 

  • Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sport Exerc 39:377–390

    Google Scholar 

  • Schroer AB, Saunders MJ, Baur DA, Womack CJ, Luden ND (2014) Cycling time trial performance may be impaired by whey protein and l-alanine intake during prolonged exercise. Int J Sport Nutr Exerc Metab 24:507–515

    PubMed  Google Scholar 

  • Scott BE, Laursen PB, James LJ, Boxer B, Chandler Z, Lam E, Gascoyne T, Messenger J, Mears SA (2019) The effect of 1,3-butanediol and carbohydrate supplementation on running performance. J Sci Med Sport 22:702–706

    PubMed  Google Scholar 

  • Scott S, Kempf P, Bally L, Stettler C (2019) Carbohydrate intake in the context of exercise in people with type 1 diabetes. Nutrients 11:3017

    CAS  PubMed Central  Google Scholar 

  • Scott SN, Anderson L, Morton JP, Wagenmakers AJM, Riddell MC (2019) Carbohydrate restriction in type 1 diabetes: a realistic therapy for improved glycaemic control and athletic performance? Nutrients 11:1022

    CAS  PubMed Central  Google Scholar 

  • Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ (2020) Ergogenic effect of nitrate supplementation: a systematic review and meta-analysis. Med Sci Sports Exerc 52:2250–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw DM, Merien F, Braakhuis A, Plews D, Laursen P, Dulson DK (2019) The effect of 1,3-butanediol on cycling time-trial performance. Int J Sport Nutr Exerc Metab 29:466–473

    CAS  PubMed  Google Scholar 

  • Shearer J, Graham TE (2014) Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal. Nutr Rev 72:121–136

    PubMed  Google Scholar 

  • Shi X, Osterberg KL, Petrie H, Stofan JR, Murray R (2017) Effect of different osmolalities, CHO types, and [CHO] on gastric emptying in humans. Med Sci Sport Exerc 49:1015–1021

    Google Scholar 

  • Skinner TL, Desbrow BEN, Arapova J, Schaumberg MA, Osborne J, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2019) Women experience the same ergogenic response to caffeine as men. Med Sci Sport Exerc 51:1195–1202

    CAS  Google Scholar 

  • Slivka D, Hailes W, Cuddy J, Ruby B (2008) Caffeine and carbohydrate supplementation during exercise when in negative energy balance: effects on performance, metabolism, and salivary cortisol. Appl Physiol Nutr Metab 33:1079–1085

    CAS  PubMed  Google Scholar 

  • Smith J, Zachwieja JJ, Péronnet F, Passe DH, Massicotte D, Lavoie C, Pascoe DD (2010) Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. J Appl Physiol 108:1520–1529

    CAS  PubMed  Google Scholar 

  • Smith J, Pascoe DD, Passe DH, Ruby BC, Stewart LK, Baker LB, Zachwieja JJ (2013) Curvilinear dose-response relationship of carbohydrate (0–120 g·h-1) and performance. Med Sci Sport Exerc 45:336–341

    CAS  Google Scholar 

  • Southward K, Rutherfurd-Markwick KJ, Ali A (2018) The effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sport Med 48:1913–1928

    Google Scholar 

  • Souza DB, Del Coso J, Casonatto J, Polito MD (2017) Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr 56:13–27

    CAS  PubMed  Google Scholar 

  • Sriamornsak P (2011) Application of pectin in oral drug delivery. Expert Opin Drug Deliv 8:1009–1023

    CAS  PubMed  Google Scholar 

  • Stannard SR, Thompson MW, Brand-Miller JC (2000) The effect of glycemic index on plasma glucose and lactate levels during incremental exercise. Int J Sport Nutr Exerc Metab 10:51–61

    CAS  PubMed  Google Scholar 

  • Stellingwerff T, Cox GR (2014) Systematic review: carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab 14:1–14

    Google Scholar 

  • Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM (2006) Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab 290:E380–E388

    CAS  PubMed  Google Scholar 

  • Stellingwerff T, Boon H, Gijsen AP, Stegen JH, Kuipers H, van Loon LJ (2007) Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. Pflugers Arch 454:635–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens FB, Roig M, Armstrong G, Greenhaff PL (2008) Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise. J Sport Sci 26:149–154

    Google Scholar 

  • Stepto NK, Carey AL, Staudacher HM, Cummings NK, Burke LM, Hawley JA (2002) Effect of short-term fat adaptation on high-intensity training. Med Sci Sport Exerc 34:449–455

    Google Scholar 

  • Stevenson E, Williams C, Biscoe H (2005) The metabolic responses to high carbohydrate meals with different glycemic indices consumed during recovery from prolonged strenuous exercise. Int J Sport Nutr Exerc Metab 15:291–307

    CAS  PubMed  Google Scholar 

  • Stevenson EJE, Astbury NM, Simpson EJ, Taylor MA, Macdonald IA (2009) Fat oxidation during exercise and satiety during recovery are increased following a low-glycemic index breakfast in sedentary women. J Nutr 139:890–897

    CAS  PubMed  Google Scholar 

  • Stocks B, Betts JA, McGawley K (2016) Effects of carbohydrate dose and frequency on metabolism, gastrointestinal discomfort, and cross-country skiing performance. Scand J Med Sci Sport 26:1100–1108

    CAS  Google Scholar 

  • Sutehall S, Muniz-Pardos B, Bosch AN, Di Gianfrancesco A, Pitsiladis YP (2018) Sports drinks on the edge of a new era. Curr Sports Med Rep 17:112–116

    PubMed  Google Scholar 

  • Sutehall S, Galloway SDR, Bosch A, Pitsiladis Y (2020) Addition of an alginate hydrogel to a carbohydrate beverage enhances gastric emptying. Med Sci Sport Exerc 52:1785–1792

    CAS  Google Scholar 

  • Tarnopolsky MA (1994) Caffeine and endurance performance. Sport Med Eval Res Exerc Sci Sport Med 18:109–125

    CAS  Google Scholar 

  • Tarnopolsky MA (2000) Gender differences in substrate metabolism during endurance exercise. Can J Appl Physiol 25:312–327

    CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD (1995) Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol 78:1360–1368

    CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Zawada C, Richmond LB, Carter S, Shearer J, Graham T, Phillips SM (2001) Gender differences in carbohydrate loading are related to energy intake. J Appl Physiol 91:225–230

    CAS  PubMed  Google Scholar 

  • Tarpey MD, Roberts JD, Kass LS, Tarpey RJ, Roberts MG (2013) The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab 38:1245–1253

    CAS  PubMed  Google Scholar 

  • Taylor C, Higham D, Close GL, Morton JP (2011) The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. Int J Sport Nutr Exerc Metab 21:410–416

    CAS  PubMed  Google Scholar 

  • Temesi J, Johnson NA, Raymond J, Burdon CA (2011) Carbohydrate ingestion during endurance exercise improves performance in adults. J Nutr 141:890–897

    CAS  PubMed  Google Scholar 

  • ter Steege RWF, Kolkman JJ (2012) Review article: the pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Aliment Pharm Ther 35:516–528

    Google Scholar 

  • Thomas DE, Brotherhood JR, Brand JC (1991) Carbohydrate feeding before exercise: effect of glycemic index. Int J Sport Med 12:180–186

    CAS  Google Scholar 

  • Thomas DT, Erdman KA, Burke LM (2016) Nutrition and athletic performance. Med Sci Sport Exerc 48:543–568

    CAS  Google Scholar 

  • Thomson ABR, Keelan M, Thiesen A, Clandinin MT, Ropeleski M, Wild GE (2001) Small bowel review: normal physiology part 1. Dig Dis Sci 46:2567–2587

    CAS  PubMed  Google Scholar 

  • Thong FSL, Derave W, Kiens B, Graham TE, Ursø B, Wojtaszewski JFP, Hansen BF, Richter EA (2002) Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes 51:583–590

    CAS  PubMed  Google Scholar 

  • Thorburn MS, Vistisen B, Thorp RM, Rockell MJ, Jeukendrup AE, Xu X, Rowlands DS (2006) Attenuated gastric distress but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. J Appl Physiol 101:1733–1743

    CAS  PubMed  Google Scholar 

  • Thorburn MS, Vistisen B, Thorp RM, Rockell MJ, Jeukendrup AE, Xu X, Rowlands DS (2007) No attenuation of gastric distress or benefit to performance with adaptation to octanoate-rich esterified oils in female cyclists. Eur J Sport Sci 7:179–192

    Google Scholar 

  • Thorell A, Hirshman MF, Nygren J, Jorfeldt L, Wojtaszewski JFP, Dufresne SD, Horton ES, Ljungqvist O, Goodyear LJ (1999) Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol Endocrinol Metab 277(4 Pt):E733–E741

    CAS  Google Scholar 

  • Tremblay J, Peronnet F, Massicotte D, Lavoie C (2010) Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sport Exerc 42:1314–1323

    CAS  Google Scholar 

  • Trenell MI, Stevenson E, Stockmann K, Brand-Miller J (2008) Effect of high and low glycaemic index recovery diets on intramuscular lipid oxidation during aerobic exercise. Br J Nutr 99:326–332

    CAS  PubMed  Google Scholar 

  • Trexler ET, Keith DS, Lucero AA, Stoner L, Schwartz TA, Persky AM, Ryan ED, Smith-Ryan AE (2019) Effects of citrulline malate and beetroot juice supplementation on energy metabolism and blood flow during submaximal resistance exercise. J Diet Suppl 17:698–717

    PubMed  Google Scholar 

  • Triplett D, Doyle JA, Rupp JC, Benardot D (2010) An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab 20:122–131

    CAS  PubMed  Google Scholar 

  • Trommelen J, Fuchs CJ, Beelen M, Lenaerts K, Jeukendrup AE, Cermak NM, Van Loon LJC (2017) Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise. Nutrients 9:167

    PubMed Central  Google Scholar 

  • Truswell AS, Seach JM, Thorburn AW (1988) Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr 48:1424–1430

    CAS  PubMed  Google Scholar 

  • Valentine RJ, Saunders MJ, Todd MK, St Laurent TG (2008) Influence of carbohydrate-protein beverage on cycling endurance and indices of muscle disruption. Int J Sport Nutr Exerc Metab 18:363–378

    CAS  PubMed  Google Scholar 

  • Van De Walle GP, Vukovich MD (2018) The effect of nitrate supplementation on exercise tolerance and performance: a systematic review and meta-analysis. J Strength Cond Res 32:1796–1808

    Google Scholar 

  • van Essen M, Gibala MJ (2006) Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sport Exerc 38:1476–1483

    Google Scholar 

  • van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ (2000) Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr 72:106–111

    PubMed  Google Scholar 

  • Van Loon LJC (2014) Is there a need for protein ingestion during exercise? Sport Med 44:S105–S111

    Google Scholar 

  • Van Hall G, MacLean DA, Saltin B, Wagenmakers AJM (1996) Mechanisms of activation of muscle branched-chain α-keto acid dehydrogenase during exercise in man. J Physiol 494:899–905

    PubMed  PubMed Central  Google Scholar 

  • Van Loon LJC, Greenhaff PL, Constantin-Teodosiu D, Saris WHM, Wagenmakers AJM (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304

    PubMed  PubMed Central  Google Scholar 

  • Van Nieuwenhoven MA, Brummer RJM, Brouns F (2000) Gastrointestinal function during exercise: comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol 89:1079–1085

    PubMed  Google Scholar 

  • Van Zyl CG, Lambert EV, Hawley JA, Noakes TD, Dennis SC (1996) Effects of medium-chain triglyceride ingestion on fuel metabolism and cycling performance. J Appl Physiol 80:2217–2225

    PubMed  Google Scholar 

  • Vandenbogaerde TJ, Hopkins WG (2011) Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sport Med 41:773–792

    Google Scholar 

  • Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fat Acids 70:309–319

    CAS  Google Scholar 

  • Venables MC, Brouns F, Jeukendrup AE (2008) Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sport Exerc 40:1653–1659

    CAS  Google Scholar 

  • Vist GE, Maughan RJ (1995) The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol 486(Pt 2):523–531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt S, Heinrich L, Schumacher YO, Großhauser M, Blum A, König D, Berg A, Schmid A (2005) Energy intake and energy expenditure of elite cyclists during preseason training. Int J Sport Med 26:701–706

    CAS  Google Scholar 

  • Vukovich MD, Costill DL, Hickey MS, Trappe SW, Cole KJ, Fink WJ (1993) Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J Appl Physiol 75:1513–1518

    CAS  PubMed  Google Scholar 

  • Waldman HS, Basham SA, Price FG, Smith JW, Chander H, Knight AC, Krings BM, McAllister MJ (2018) Exogenous ketone salts do not improve cognitive responses after a high-intensity exercise protocol in healthy college-aged males. Appl Physiol Nutr Metab 43:711–717

    CAS  PubMed  Google Scholar 

  • Walker JL, Heigenhauser GJF, Hultman E, Spriet LL (2000) Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol 88:2151–2158

    CAS  PubMed  Google Scholar 

  • Wallis GA, Rowlands DS, Shaw C, Jentjens RLPG, Jeukendrup AE (2005) Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sport Exerc 37:426–432

    CAS  Google Scholar 

  • Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE (2006) Metabolic response to carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab 290:E708–E715

    CAS  PubMed  Google Scholar 

  • Wanders AJ, Jonathan MC, Van Den Borne JJGC, Mars M, Schols HA, Feskens EJM, De Graaf C (2013) The effects of bulking, viscous and gel-forming dietary fibres on satiation. Br J Nutr 109:1330–1337

    CAS  PubMed  Google Scholar 

  • Watson P, Shirreffs SM, Maughan RJ (2004) The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur J Appl Physiol 93:306–314

    CAS  PubMed  Google Scholar 

  • Wee SL, Williams C, Gray S, Horabin J (1999) Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sport Exerc 31:393–399

    CAS  Google Scholar 

  • Welch IM, Bruce C, Hill SE, Read NW (1987) Duodenal and ileal lipid suppresses postprandial blood glucose and insulin responses in man: possible implications for the dietary management of diabetes mellitus. Clin Sci 72:209–216

    CAS  Google Scholar 

  • West DJ, Morton RD, Stephens JW, Bain SC, Kilduff LP, Luzio S, Still R, Bracken RM (2011) Isomaltulose improves postexercise glycemia by reducing CHO oxidation in T1DM. Med Sci Sports Exerc 43:204–210

    CAS  PubMed  Google Scholar 

  • Whitley HA, Humphreys SM, Campbell IT, Keegan MA, Jayanetti TD, Sperry DA, MacLaren DP, Reilly T, Frayn KN (1998) Metabolic and performance responses during endurance exercise after high-fat and high-carbohydrate meals. J Appl Physiol 85:418–424

    CAS  PubMed  Google Scholar 

  • Williams M, Raven PB, Fogt DL, Ivy JL (2003) Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res 17:12–19

    PubMed  Google Scholar 

  • Wilson PB, Ingraham SJ (2015) Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports 25:e613–e620

    CAS  PubMed  Google Scholar 

  • Wolever T, Jenkins D (1986) The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 43:167–172

    CAS  PubMed  Google Scholar 

  • Yeo SE, Jentjens RLPG, Wallis GA, Jeukendrup AE (2005) Caffeine increases exogenous carbohydrate oxidation during exercise. J Appl Physiol 99:844–850

    CAS  PubMed  Google Scholar 

  • Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105:1462–1470

    CAS  PubMed  Google Scholar 

  • Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA (2011) Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab 36:12–22

    CAS  PubMed  Google Scholar 

  • Zderic TW, Schenk S, Davidson CJ, Byerley LO, Coyle EF (2004) Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by β-adrenergic blockade. Am J Physiol Endocrinol Metab 287:E1195–E1201

    CAS  PubMed  Google Scholar 

  • Zorzano A, Palacín M, Gumà A (2005) Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. Acta Physiol Scand 183:43–58

    CAS  PubMed  Google Scholar 

  • Zuhl MN, Lanphere KR, Kravitz L, Mermier CM, Schneider S, Dokladny K, Moseley PL (2014) Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression. J Appl Physiol 116:183–191

    CAS  PubMed  Google Scholar 

  • Zuntz N, Loeb W (1894) Über die Bedeutung der verschiedene Nährstoff als Energiequelle der Muskelkraft. Arch Anat Physiol 18:541–543

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Katie Baur for reviewing this manuscript and providing comments. The authors are also grateful to Dr. William Wightman, for creating the artwork used in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and drafting of this review. Daniel Baur was primarily responsible for drafting the following sections: abstract, introduction, conclusions, and sections on modified carbohydrate, hydrogels, caffeine, lipids, nitrate, diets, specials populations, and tables. Michael Saunders drafted the section on multiple transportable carbohydrates, protein, and the figure. Both authors provided edits and comments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniel A. Baur.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baur, D.A., Saunders, M.J. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 121, 23–66 (2021). https://doi.org/10.1007/s00421-020-04534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-020-04534-y

Keywords

Navigation