Skip to main content
Log in

Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Thermoneutral head-out water immersion (WI) and 6° head-down tilt (HDT) have been considered as suitable models to increase central blood volume and simulate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. However, any differences in autonomic cardiovascular adaptations are still unclear. In this study, we hypothesized that WI induces a higher activation of arterial baroreceptors and the parasympathetic system.

Methods

Ten healthy men underwent 30 min of WI, HDT, and a supine position (SP). RR intervals (RRI) and blood pressure (BP) were continuously monitored. High frequency power (HF), low frequency power (LF) and LF/HF ratio were calculated to study sympathetic and parasympathetic activities, and a spontaneous baroreflex method was used to study arterial baroreflex sensitivity (aBRS). Lung transfer of nitric oxide and carbon monoxide (TLNO/TLCO), vital capacity and alveolar volume (Vc/VA) were measured to study central blood redistribution.

Results

We observed (1) a similar increase in RRI and decrease in BP; (2) a similar increase in HF power during all experimental conditions, whereas LF increased after; (3) a similar rise in aBRS; (4) a similar increase in Vc/VA and decrease in TLNO/TLCO in all experimental conditions.

Conclusions

These results showed a cardiac parasympathetic dominance to the same extent, underpinned by a similar arterial baroreflex activation during WI and HDT as well as control SP. Future studies may address their association with cold or hyperoxia to assess their ability to replicate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aBRS:

Arterial baroreflex sensitivity

ANOVA:

Repeated-measures analysis of variance

DBP:

Diastolic blood pressure

Dm:

Membrane diffusing capacity

HDT:

6° Head-down tilt

HF:

High frequency power

HFnu:

Normalized HF

LF:

Low frequency power

LFnu:

Normalized LF

LF/HF ratio:

Low to high frequency power

Ptot:

Total power

RRI:

RR intervals

SBP:

Systolic blood pressure

SP:

Supine position

TLCO:

Lung transfer of carbon monoxide

TLNO:

Lung transfer of nitric oxide

TLNO/TLCO:

Lung transfer of nitric oxide and carbon monoxide

TRS:

Triogometric regressive spectral analysis methods

VA:

Pulmonary alveolar volume

Vc:

Capillary lung volume

Vc/VA:

Vital capacity and alveolar volume

VLF:

Very low frequency power

WI:

Thermoneutral head-out water immersion

References

  • Arborelius M, Balldin UI, Lila B, Lundgren CE (1972) Regional lung function in man during immersion with the head above water. Aerosp Med 43:701–707

    PubMed  Google Scholar 

  • Ax M, Sanchez-Crespo A, Lindahl SGE et al (2017) The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture. J Appl Physiol 122:1445–1451

    Article  CAS  PubMed  Google Scholar 

  • Ayme K, Gavarry O, Rossi P et al (2014) Effect of head-out water immersion on vascular function in healthy subjects. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 39:425–431

    Article  Google Scholar 

  • Bonde-Petersen F, Suzuki Y, Sadamoto T, Christensen NJ (1983) Cardiovascular effects of simulated zero-gravity in humans. Acta Astronaut 10:657–661

    Article  CAS  PubMed  Google Scholar 

  • Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82–93

    Article  PubMed  Google Scholar 

  • Burns JW (2005) Hemodynamics of graded water immersion in the baboon: +Gz protection potential. Aviat Space Environ Med 76:430–434

    PubMed  Google Scholar 

  • Burr RL (2007) Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep 30:913–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Chouchou F, Desseilles M (2014) Heart rate variability: a tool to explore the sleeping brain? Front Neurosci 8:402

    Article  PubMed  PubMed Central  Google Scholar 

  • Chouchou F, Pichot V, Garet M et al (2009) Dominance in cardiac parasympathetic activity during real recreational SCUBA diving. Eur J Appl Physiol 106:345–352

    Article  PubMed  Google Scholar 

  • Choukroun ML, Guenard H, Varene P (1983) Pulmonary capillary blood volume during immersion in water at different temperatures. Undersea Biomed Res 10:331–342

    CAS  PubMed  Google Scholar 

  • Echt M, Lange L, Gauer OH (1974) Changes of peripheral venous tone and central transmural venous pressure during immersion in a thermo-neutral bath. Pflugers Arch 352:211–217

    Article  CAS  PubMed  Google Scholar 

  • European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381

    Article  Google Scholar 

  • Florian JP, Simmons EE, Chon KH et al (2013) Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion. J Appl Physiol 115:1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Florian JP, Chon KH, Faes L, Shykoff BE (2016) Breathing 100% oxygen during water immersion improves postimmersion cardiovascular responses to orthostatic stress. Physiol Rep 4:e13031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu Q, Sugiyama Y, Kamiya A et al (1999) A comparison of the effects of lower body positive pressure and head-down tilt on cardiovascular responses in humans. J Gravitational Physiol 6:P111–P112

    CAS  Google Scholar 

  • Gaffney FA, Nixon JV, Karlsson ES et al (1985) Cardiovascular deconditioning produced by 20 hours of bedrest with head-down tilt (-5 degrees) in middle-aged healthy men. Am J Cardiol 56:634–638

    Article  CAS  PubMed  Google Scholar 

  • Gauer OH, Henry JP (1976) Neurohormonal control of plasma volume. Int Rev Physiol 9:145–190

    CAS  PubMed  Google Scholar 

  • Gharib C, Gauquelin G, Pequignot JM et al (1988) Early hormonal effects of head-down tilt (-10 degrees) in humans. Aviat Space Environ Med 59:624–629

    CAS  PubMed  Google Scholar 

  • Goreham JA, Kimmerly DS, Ladouceur M (2017) Using the Portapres(®) for the measurement of toe arterial blood pressure during movement: is it valid and reliable? Physiol Rep 5:e13369

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenard H, Varene N, Vaida P (1987) Determination of lung capillary blood volume and membrane diffusing capacity in man by the measurements of NO and CO transfer. Respir Physiol 70:113–120

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Ishihara M, Tanaka A et al (1997) Face immersion increases vagal activity as assessed by heart rate variability. Eur J Appl Physiol 76:394–399

    Article  CAS  Google Scholar 

  • Hughes JMB, van der Lee I (2013) The TL, NO/TL, CO ratio in pulmonary function test interpretation. Eur Respir J 41:453–461

    Article  CAS  PubMed  Google Scholar 

  • Hughson RL, Helm A, Durante M (2017) Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 15(3):167–180

    Article  PubMed  Google Scholar 

  • Iida R, Hirayanagi K, Iwasaki K et al (1999) Non-invasive assessment of human baroreflex during different body positions. J Auton Nerv Syst 75:164–170

    Article  CAS  PubMed  Google Scholar 

  • Kaciuba-Uscilko H, Smorawinski J, Nazar K et al (2003) Catecholamine responses to environmental stressors in trained and untrained men after 3-day bed rest. Aviat Space Environ Med 74:928–936

    CAS  PubMed  Google Scholar 

  • Kim H-Y (2013) Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restor Dent Endod 38:52–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen AS, Johansen LB, Stadeager C et al (1994) Volume-homeostatic mechanisms in humans during graded water immersion. J Appl Physiol 77:2832–2839

    Article  CAS  PubMed  Google Scholar 

  • Laude D, Elghozi J-L, Girard A et al (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol 286:R226–R231

    Article  CAS  PubMed  Google Scholar 

  • Li K, Rüdiger H, Haase R, Ziemssen T (2018) An innovative technique to assess spontaneous baroreflex sensitivity with short data segments: multiple trigonometric regressive spectral analysis. Front Physiol 9:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84:482–492

    Article  CAS  PubMed  Google Scholar 

  • Martinot JB, Guénard H, Dinh-Xuan A-T et al (2017) Nitrogen monoxide and carbon monoxide transfer interpretation: state of the art. Clin Physiol Funct Imaging 37:357–365

    Article  CAS  PubMed  Google Scholar 

  • Matsui N, Kambe F, Miyamoto N et al (1993) Hormonal responses to head-out water immersion diminish after exposure to head-down tilt. Microgravity Sci Technol 6:286–292

    CAS  PubMed  Google Scholar 

  • Miki K, Klocke MR, Hong SK, Krasney JA (1989) Interstitial and intravascular pressures in conscious dogs during head-out water immersion. Am J Physiol 257:R358–R364

    CAS  PubMed  Google Scholar 

  • Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338

    Article  CAS  PubMed  Google Scholar 

  • Miwa C, Sugiyama Y, Mano T et al (1996) Spectral characteristics of heart rate and blood pressure variabilities during head-out water immersion. Environ Med 40:91–94

    CAS  PubMed  Google Scholar 

  • Miwa C, Sugiyama Y, Mano T et al (2000) Effects of aging on cardiovascular responses to gravity-related fluid shift in humans. J Gerontol A Biol Sci Med Sci 55:M329–M335

    Article  CAS  PubMed  Google Scholar 

  • Mourot L, Bouhaddi M, Gandelin E et al (2007) Conditions of autonomic reciprocal interplay versus autonomic co-activation: effects on non-linear heart rate dynamics. Auton Neurosci 137:27–36

    Article  PubMed  Google Scholar 

  • Mourot L, Bouhaddi M, Gandelin E et al (2008) Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion. Aviat Space Environ Med 79:14–20

    Article  PubMed  Google Scholar 

  • Mourot L, Bouhaddi M, Regnard J (2009) Effects of the cold pressor test on cardiac autonomic control in normal subjects. Physiol Res 58:83–91

    Article  CAS  PubMed  Google Scholar 

  • Nixon JV, Murray RG, Bryant C et al (1979) Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol 46:541–548

    Article  CAS  PubMed  Google Scholar 

  • Norsk P (1992) Gravitational stress and volume regulation. Clin Physiol 12:505–526

    Article  CAS  Google Scholar 

  • Norsk P (1993) Gravitational stress and regulation of neuroendocrine elements and fluid volume in humans. Physiologist 36:S1–S4

    CAS  PubMed  Google Scholar 

  • Norsk P (2005) Cardiovascular and fluid volume control in humans in space. Curr Pharm Biotechnol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  • Norsk P, Bonde-Petersen F, Warberg J (1985) Central venous pressure and plasma arginine vasopressin during water immersion in man. Eur J Appl Physiol 54:71–78

    Article  CAS  Google Scholar 

  • Pagani M, Montano N, Porta A et al (1997) Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation 95:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Pichot V, Roche F, Denis C et al (2005) Interval training in elderly men increases both heart rate variability and baroreflex activity. Clin Auton Res 15:107–115

    Article  PubMed  Google Scholar 

  • Pichot V, Roche F, Celle S et al (2016) HrVanalysis: a free software for analyzing cardiac autonomic activity. Front Physiol 7:557

    Article  PubMed  PubMed Central  Google Scholar 

  • Porta A, Faes L, Marchi A et al (2015) Disentangling cardiovascular control mechanisms during head-down tilt via joint transfer entropy and self-entropy decompositions. Front Physiol 6:301

    PubMed  PubMed Central  Google Scholar 

  • Pump B, Videbaek R, Gabrielsen A, Norsk P (1999) Arterial pressure in humans during weightlessness induced by parabolic flights. J Appl Physiol 87:928–932

    Article  CAS  PubMed  Google Scholar 

  • Quanjer PH, Tammeling GJ, Cotes JE et al (1993) Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European community for steel and coal. Official statement of the European respiratory society. Eur Respir J Suppl 16:5–40

    Article  CAS  PubMed  Google Scholar 

  • Regnard J, Heer M, Drummer C, Norsk P (2001) Validity of microgravity simulation models on earth. Am J Kidney Dis Off J Natl Kidney Found 38:668–674

    Article  CAS  Google Scholar 

  • Roche F, Reynaud C, Garet M et al (2002) Cardiac baroreflex control in humans during and immediately after brief exposure to simulated high altitude. Clin Physiol Funct Imaging 22:301–306

    Article  PubMed  Google Scholar 

  • Roche F, Pépin J-L, Achour-Crawford E et al (2012) At 68 years, unrecognised sleep apnoea is associated with elevated ambulatory blood pressure. Eur Respir J 40:649–656

    Article  CAS  PubMed  Google Scholar 

  • Rüdiger H, Klinghammer L, Scheuch K (1999) The trigonometric regressive spectral analysis–a method for mapping of beat-to-beat recorded cardiovascular parameters on to frequency domain in comparison with Fourier transformation. Comput Methods Programs Biomed 58:1–15

    Article  PubMed  Google Scholar 

  • Salman IM (2016) Major autonomic neuroregulatory pathways underlying short- and long-term control of cardiovascular function. Curr Hypertens Rep 18:18

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Cheung JJH, Frick H et al (2014) When neuroscience gets wet and hardcore: neurocognitive markers obtained during whole body water immersion. Exp Brain Res 232:3325–3331

    Article  PubMed  Google Scholar 

  • Sforza E, Chouchou F, Pichot V et al (2012) Heart rate increment in the diagnosis of obstructive sleep apnoea in an older population. Sleep Med 13:21–28

    Article  PubMed  Google Scholar 

  • Shamsuzzaman A, Ackerman MJ, Kuniyoshi FS et al (2014) Sympathetic nerve activity and simulated diving in healthy humans. Auton Neurosci 181:74–78

    Article  PubMed  Google Scholar 

  • Shattock MJ, Tipton MJ (2012) “Autonomic conflict”: a different way to die during cold water immersion? J Physiol 590:3219–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraishi M, Schou M, Gybel M et al (2002) Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans. J Appl Physiol 92:264–268

    Article  PubMed  Google Scholar 

  • Taylor Carr, Myers Eckberg (1998) Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation 98(6):547–555

    Article  CAS  PubMed  Google Scholar 

  • Ziemssen T, Reimann M, Gasch J, Rüdiger H (2013) Trigonometric regressive spectral analysis: an innovative tool for evaluating the autonomic nervous system. J Neural Transm Vienna (Austria) 120(Suppl 1):S27–S33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FC, VP, FR, FC, JCB, and LB conceived and designed research; FC, MG, LB, and FC performed experiments; FC, VP, LB, and FR analyzed data; FC, VP, LB, JBC, FC, and FR interpreted results of experiments; FC prepared figures; FC, LB, and FR drafted manuscript; FC, VP, MG, FC, LB, and FR edited and revised manuscript; FC, VP, MG, FC, LB, and FR approved final version of manuscript.

Corresponding author

Correspondence to Florian Chouchou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with ethical standards of the institutional research committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by Massimo Pagani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouchou, F., Pichot, V., Costes, F. et al. Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. Eur J Appl Physiol 120, 337–347 (2020). https://doi.org/10.1007/s00421-019-04278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-019-04278-4

Keywords

Navigation