Skip to main content
Log in

Heart Rate Variability from Underwater Spiroergometry: How Meaningful?

  • Original Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Cardiovascular fitness of divers is overwhelmingly performed using bicycle ergometry. A more sport-specific alternative presents fit2dive, an underwater spiroergometry system. Purpose of this exploratory study: using fit2dive to investigate the diagnostic value of measures of heart rate variability (HRV) after markedly increasing physical load. Ten scuba divers employed the fit2dive system and increased fin-swimming speed until exhaustion. Breathing gas consumption (V̇E) and heart rate (HR) were measured. A three-lead ECG was recorded to analyze for time and frequency domain HRV-measures. V̇E increased from 16.5 ± 6.5 to 68.3 ± 26.6 L/min. HR increased from 96 ± 13 beats/min (mean ± SD) at rest to 170 ± 14 beats/min before exhaustion. Global variability (SDNN: 132 ± 42 vs. 54 ± 17 ms) decreased along with two measures of parasympathetic activity (RMSSD: 59 ± 31 vs. 24 ± 16 ms; pNN50: 22% ± 12% vs. 3% ± 3%). Measures from the frequency domain decreased [low frequency (LF): 3167 ± 2651 vs. 778 ± 705 ms2] or remained unaltered [high frequency (HF): 885 ± 652 vs. 431 ± 463 ms2]. Thus, LF/HF decreased from 4.3 ± 2.3 to 2.5 ± 1.4. The sports-specific fit2dive can help assessing diving fitness by employing HRV measures. However, this study supports the view that these measures much depend on HR. Thus, HRV measures regarding altered autonomic control during exercise will lead to serious misinterpretation: as HR increases, variability decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data can be viewed via the corresponding author.

Code availability

Not applicable.

References

  1. Almeling M, Schega L, Witten F, Lirk P, Wulf K. Validity of cycle test in air compared to underwater cycling. Undersea Hyperb Med. 2006;33(1):45–53.

    CAS  PubMed  Google Scholar 

  2. Åstrand P-O, Bergh U, Kilbom Å. A 33-yr follow-up of peak oxygen uptake and related variables of former physical education students. J Appl Physiol. 1997;82(6):1844–52.

    Article  PubMed  Google Scholar 

  3. Aumann S, Röschmann M. Tauchtauglichkeit bei Frauen und spezifische gynäkologische Fragestellungen Sven Aumann und Marco Röschmann. aqua med. 2016. Available from URL: https://www.aqua-med.eu/medizin/aerztlicheleistungen/medizinische-artikel/medizinische-artikel/tauchtauglichkeit-bei-frauen/. Accessed 6 July 2021.

  4. Banach T, Grandys M, Juszczak K, Kolasińska-Kloch W, Zoładź J, Laskiewicz J, Thor PJ. Heart rate variability during incremental cycling exercise in healthy untrained young men. Folia Med Crac. 2004;45(1–2):3–12.

    Google Scholar 

  5. Berntson GG, Thomas Bigger J, Eckberg DL, Grossman P, Kaufmann PG, Malik M, H N Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623–48.

    Article  CAS  PubMed  Google Scholar 

  6. Bigger JTJ, Fleiss JL, Rolnitzky LM, Steinman RC. Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias. The CAPS and ESVEM investigators. Am J Cardiol. 1992;69(8):718–23.

    Article  PubMed  Google Scholar 

  7. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bourdillon N, Schmitt L, Yazdani S, Vesin J-M, Millet GP. Minimal window duration for accurate HRV recording in athletes. Front Neurosci. 2017;11:456.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choukroun ML, Guenard H, Varene P. Pulmonary capillary blood volume during immersion in water at different temperatures. Undersea Biomed Res. 1983;10:331–42.

    CAS  PubMed  Google Scholar 

  10. Coates AM, Hammond S, Burr JF. Investigating the use of pre-training measures of autonomic regulation for assessing functional overreaching in endurance athletes. Eur J Sport Sci. 2018;18(7):965–74.

    Article  PubMed  Google Scholar 

  11. Coumel P, Maison-Blanche P, Catuli D. Heart rate and heart rate variability in normal young adults. J Cardiovasc Electrophysiol. 1994;5:899–911.

    Article  CAS  PubMed  Google Scholar 

  12. de Geus EJC, Gianaros PJ, Brindle RC, Jennings JR, Berntson GG. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019;56(2):e13287.

    Article  PubMed  Google Scholar 

  13. Dong J-G. The role of heart rate variability in sports physiology. Exp Ther Med. 2016;11:1531–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Düking P, Zinner C, Reed JL, Holmberg H, Sperlich B. Predefined vs data-guided training prescription based on autonomic nervous system variation: a systematic review. Scand J Med Sci Sports. 2020;30(12):2291–304.

    Article  PubMed  Google Scholar 

  15. Dwyer J. Estimation of oxygen uptake from heart rate response to undersea work. Undersea Biomed Res. 1983;10(2):77–87.

    CAS  PubMed  Google Scholar 

  16. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol. 1981;241(4):H620–629.

    CAS  PubMed  Google Scholar 

  17. Hottenrott K, Hoos O, Esperer HD. Herzfrequenzvariabilität und Sport. Herz Kardiovaskuläre Erkrankungen. 2006;31:544–52.

    Google Scholar 

  18. Kajaia T, Maskhulia L, Chelidze K, Akhalkatsi V, Kakhabrishvili Z. The effects of non-functional overreaching and overtraining on autonomic nervous system function in highly trained athletes. Ga Med News. 2017;(264):97–103.

    Google Scholar 

  19. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng. 1993;21(3):245–311.

    CAS  PubMed  Google Scholar 

  20. Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310.

    Article  PubMed  Google Scholar 

  21. Lambrechts K, Germonpre P, Charbel B, Cialoni D, Musimu P, Sponsiello N, Marroni A, Pastouret F, Balestra C. Ultrasound lung “comets” increase after breath-hold diving. Eur J Appl Physiol. 2011;111(4):707–13.

    Article  PubMed  Google Scholar 

  22. Lombardi F, Malliani A. Power spectral analysis of RR variability. G Ital Cardiol. 1992;22(4):501–9.

    CAS  PubMed  Google Scholar 

  23. Lundell RV, Räisänen-Sokolowski AK, Wuorimaa TK, Ojanen T, Parkkola KI. Diving in the Arctic: cold water immersion’s effects on heart rate variability in navy divers. Front Physiol. 2019;10:1600.

    Article  PubMed  Google Scholar 

  24. Malik M, Camm AJ. Heart rate variability and clinical cardiology. Br Heart J. 1994;72(6):3–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.

    Article  CAS  PubMed  Google Scholar 

  26. Mano Y. Evaluation of diving stress implication of analysis of work loads. Sangyo Igaku. 1987;29(3):202–9.

    Article  CAS  PubMed  Google Scholar 

  27. Manresa-Rocamora A, Flatt AA, Casanova-Lizón A, Ballester-Ferrer JA, Sarabia JM, Vera-Garcia FJ, Moya-Ramón M. Heart rate-based indices to detect parasympathetic hyperactivity in functionally overreached athletes. A meta-analysis. Scand J Med Sci Sports. 2021. https://doi.org/10.1111/sms.13932.

    Article  PubMed  Google Scholar 

  28. Marchitto N, Iannarelli N, Paparello PT, Cioeta E, Parisi F, Pirrone S, Raimondi G. Cardiovascular risk in scuba divers. J Sports Med Phys Fit. 2019;59(10):1779–82.

    Google Scholar 

  29. Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;13(1):1–24.

    Article  PubMed  Google Scholar 

  30. Möller F, Jacobi E, Hoffmann U, Muth T, Schipke JD. Oxygen-enriched air decreases ventilation during high-intensity fin-swimming underwater. Int J Sports Med. 2021. https://doi.org/10.1055/a-1554-5093.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paulev PE, Pokorski M, Honda Y, Ahn B, Masuda A, Kobayashi T, Nishibayashi Y, Sakakibara Y, Tanaka M, Nakamura W. Facial cold receptors and the survival reflex “diving bradycardia” in man. Jpn J Physiol. 1990;40(5):701–12.

    Article  CAS  PubMed  Google Scholar 

  32. Pelzer M, Hafner D, Arnold G, Schipke JD. Minimal interval length for safe determination of brief heart rate variability. Z Kardiol. 1995;84(12):986–94.

    CAS  PubMed  Google Scholar 

  33. Pendergast DR, Lundgren CEG. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol (Bethesda, Md: 1985). 1985;106(1):276–83.

    Article  Google Scholar 

  34. Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):3729–41.

    Article  PubMed  Google Scholar 

  35. Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773–81.

    Article  PubMed  Google Scholar 

  36. Pluto R, Cruze SA, Weiss M, Hotz T, Mandel P, Weicker H. Cardiocirculatory, hormonal, and metabolic reactions to various forms of ergometric tests. Int J Sports Med. 1988;9(Suppl 2):S79-88.

    Article  CAS  PubMed  Google Scholar 

  37. Reyes del Paso GA, Langewitz W, Mulder LJM, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies: LF HRV and sympathetic cardiac tone. Psychophysiology. 2013;50:477–87.

    Article  PubMed  Google Scholar 

  38. Sacha J. Interaction between heart rate and heart rate variability: HR and HRV interaction. Ann Noninvasive Electrocardiol. 2014;19(3):207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sacha J, Pluta W. Different methods of heart rate variability analysis reveal different correlations of heart rate variability spectrum with average heart rate. J Electrocardiol. 2005;38(1):47–53.

    Article  PubMed  Google Scholar 

  40. Salerni S, Di Francescomarino S, Cadeddu C, Acquistapace F, Maffei S, Gallina S. The different role of sex hormones on female cardiovascular physiology and function: not only oestrogens. Eur J Clin Invest. 2015;45(6):634–45.

    Article  CAS  PubMed  Google Scholar 

  41. Sandercock GRH, Brodie DA. The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports. 2006;16(5):302–13.

    Article  CAS  PubMed  Google Scholar 

  42. Sato N, Miyake S. Cardiovascular reactivity to mental stress: relationship with menstrual cycle and gender. J Physiol Anthropol Appl Hum Sci. 2004;23(6):215–23.

    Article  Google Scholar 

  43. Schipke JD, Pelzer M. Effect of immersion, submersion, and scuba diving on heart rate variability. Br J Sports Med. 2001;35(3):174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schirato SR, El-Dash I, El-Dash V, Natali JE, Starzynski PN, Chaui-Berlinck JG. Heart rate variability changes as an indicator of decompression-related physiological stress. Undersea Hyperb Med. 2018;45(2):173–82.

    Article  PubMed  Google Scholar 

  45. Schmitt L, Regnard J, Millet GP. Monitoring fatigue status with HRV measures in elite athletes: an avenue beyond RMSSD? Front Physiol. 2015;6:343.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Singh N, Moneghetti KJ, Christle JW, Hadley D, Plews D, Froelicher V. Heart rate variability: an old metric with new meaning in the era of using mHealth technologies for health and exercise training guidance. Part one: physiology and methods. Arrhythm Electrophysiol Rev. 2018;7(3):193.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stauss HM. Heart rate variability: just a surrogate for mean heart rate? Hypertension. 2014;64(6):1184–6.

    Article  CAS  PubMed  Google Scholar 

  49. Steinberg FTT, Steegmanns A, Dalecki M, Röschmann M, Hoffmann U. fit2dive—a field test for assessing the specific capability of underwater fin swimming with SCUBA. Int J Perform Anal Sport. 2011;11(1):197–208.

    Article  Google Scholar 

  50. Sztajzel J. Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly. 2004;134(35–36):514–22.

    PubMed  Google Scholar 

  51. Tada Y, Yoshizaki T, Tomata Y, Yokoyama Y, Sunami A, Hida A, Kawano Y. The impact of menstrual cycle phases on cardiac autonomic nervous system activity: an observational study considering lifestyle (diet, physical activity, and sleep) among Female College Students. J Nutr Sci Vitaminol. 2017;63(4):249–55.

    Article  CAS  PubMed  Google Scholar 

  52. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.

    Article  Google Scholar 

  53. Vitale JA, Bonato M, La Torre AL, Banfi G. Heart rate variability in sport performance: do time of day and chronotype play a role? J Clin Med. 2019;8(5):723.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Whayne TF. Medical management and risk reduction of the cardiovascular effects of underwater diving. Curr Vasc Pharmacol. 2018;16(4):344–54.

    Article  CAS  PubMed  Google Scholar 

  55. Zenske A, Kähler W, Koch A, Oellrich K, Pepper C, Muth T, Schipke JD. Does oxygen-enriched air better than normal air improve sympathovagal balance in recreational divers? An open-water study. Res Sports Med. 2019;28(3):1–16.

    Google Scholar 

  56. Zenske A, Koch A, Kähler W, Oellrich K, Pepper C, Muth T, Schipke JD. Assessment of a dive incident using heart rate variability. Diving Hyperb Med. 2020;50(2):157–63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the enthusiastic participation of the divers on this study.

Funding

There has been funding for the study from GTÜM (German Society for Diving and Hyperbaric Medicine, Mainz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen D. Schipke.

Ethics declarations

Conflict of interest

None of the authors has to disclose any conflict of interest/competing interests.

Ethical approval

The study was approved by the ethics committee of the German Sport University Cologne, following the declaration of Helsinki.

Consent to participate

The divers were informed about the purpose and design of the study and had given written informed consent before participation.

Consent for publication

Not applicable; no data from patients are shown, and the stored data are anonymous and cannot be used to identify individual divers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, A., Möller, F., Jacobi, E. et al. Heart Rate Variability from Underwater Spiroergometry: How Meaningful?. J. of SCI. IN SPORT AND EXERCISE 5, 116–122 (2023). https://doi.org/10.1007/s42978-021-00153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-021-00153-x

Keywords

Navigation